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ABSTRACT 
This paper outlines and demonstrates a new algorithm 
which is capable of extracting characteristic fragments of 
the body outline of human figures from video image-
sequences, even in the non-ideal case of typical outdoor 
illumination conditions and camera positions. Our method 
can derive relevant information regarding the significant 
body elements from video sequences showing walking 
people, without the necessity for imposing severe or 
unusual constraints with regard to the input images. 
The proposed algorithm connects featured parts in the 
image into symmetrical objects, tracks them, and 
generates derived spatio-temporal statistical features 
which are used to ensure stable tracking results. Our 
method is fast enough for use in real-time. Using the 
grouped dual-point approach outlined here, we can extract 
biometric information suitable for subsequent analysis of 
the walking-gait characteristics, even in the case of 
overlapping and transient image outlines. 
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1.  Introduction 
 
Automatic detection of humans, and body-part 
localisation, are important but challenging problems in 
computer vision. Human motion analysis and tracking has 
long been proposed for applications in surveillance [1]. 
The primary step in analysis and tracking of human 
motion consists of the modelling of moving people 
represented in image sequences. Several approaches have 
been proposed for such modelling: e.g. elliptical cylinders  
[2], configuration of parameterised primitives [3], or 3-D 
tracking [4]. However, these methods are too complicated 
for effective detection of human figures in practical 
conditions [5]. Other common methods are the shape 
decomposition method [6], and the skeleton-based 
representation [7], which has been used to model the 

topological structure of the body. The contour-based 
representations can be extended with the use of 
deformable templates to handle shape deformations [8]. 
However, a drawback of such shape methods is that the 
model and the extracted image contour must first be 
aligned, which is not a trivial task. In addition, these 
methods cannot model individual parts of the body, so 
they can handle only a limited variety of shapes. In [9] a 
blob-based representation is introduced, which is useful in 
colour images. That method can successfully separate 
different people in the same image, provided that they are 
wearing distinct clothes; but it cannot extract detailed 
information about the various parts of the body. 
The foundation of motion analysis is motion tracking. 
This task is very important because increased precision in 
tracking brings considerable improvements in recognition 
accuracy. This improved precision can be achieved by 
using the above methods in conjunction with spatio-
temporal analysis [10]. Kalman filtering [11] is a widely 
used stochastic modeling method employed to handle 
occlusion and articulated motion. 
Problems commonly arise in situations where the 
partitions of motions and of people in the input images are 
not trivial. Nevertheless, in our examples we are able to 
successfully analyse real images similar to those obtained 
in practice from city-wide surveillance systems. We used 
high-resolution  (720x576 pixel), wide-angle cameras to 
observe human figures in busy outdoor locations; and in 
these quite realistic circumstances the resolution and 
contrast of the body outline of persons in the image is 
often rather poor. We also note that most publications 
focus on cases where only one, or at most a few, people 
are moving in the scene being analysed [12][17]. Our 
present method on the other hand is quite successful for 
multi-person images. 
Our ultimate goal is to track moving people in complex 
scenes, with the help of biometric information derived 
from the images. The dynamic properties of walking 
uniquely characterise a moving human figure [13]. In 
future work we plan to use these attributes for analysis of 
images obtained in a multi-camera environment [19]. 
Thus our main thrust in the present paper is not to detect 



and track human bodies as such, but rather to extract 
significant features suitable for subsequent biometric 
identification e.g. walking-phase and repetition frequency. 
Necessarily however the identification is sensitive to the 
accuracy of the derived attributes. Fortunately we can 
achieve the required precision in the case of tracking 
small structures on video image-sequences, although of 
course 100% accuracy is not attainable. Our principal aim 
in this paper is to isolate and track the legs in groups of 
humans whose images overlap in the given scene.  
A final aspect, not mentioned in most publications, is the 
required computation time; this is very important in real 
applications. Our method is relatively fast, because it does 
not use iterative optimisation steps; it consists instead of 
simple operators that can be implemented using dedicated 
on-board image-processing hardware such as that describ-
ed in [14] and [21]. 
Generally, object detection in videos must be done in two 
steps. Firstly, some detectable features are needed; sec-
ondly, robust tracking of the extracted features must be 
performed. Detection of humans in video image-sequen-
ces can be done in two ways: 

• detection of features and their verification; 
• detection of features that are characteristic only 

for humans or for human movements. 
In our algorithm, two features are combined: symmetry 
extraction, and characteristic-points detection. Firstly, the 
detected object’s symmetry-map is extracted; then, based 
on this feature, characteristic points are detected. The 
tracking of the features is done by considering the pres-
ence of one or two features; these are then used in a pre-
dictive fashion to assist in finding the possible location of 
another feature. 
The present paper describes a new method, comprising 
the following processing steps on the input image: 
• Adaptive background filtering 
• Finding line segments along ridges 
• Detecting the first-level symmetry axis 
• Constructing third-level symmetries 
• Finding characteristic points along edges 
• Pairing points on both sides of first-level symmetries 
• Tracking the points: their coming into being, 

disappearance, and transitions 
In the present method first-level symmetries are used to 
generate dual points associated with symmetrical moving 
objects; while third-level symmetries are applied to 
validate these objects as belonging to leg-pairs of the 
moving persons in the image. 
 
2.  Adaptive background modelling for 
change detection 
 
For the detection of changes in video image sequences we 
have implemented an adaptive background-modelling 
algorithm, as used by Stauffer et al. [18].  
In that paper an adaptive mixture of Gaussians was used 
for approximation of background changes; this is 
necessary, because of the following considerations. If 

each pixel resulted from a single surface element under 
fixed lighting conditions, a single Gaussian would be 
sufficient to model the pixel value while accounting for 
acquisition noise. If only lighting variation was 
considered to be changed over the time, then a single 
adaptive Gaussian per pixel would be sufficient. In 
practice however, multiple surfaces often appear in the 
view frustum of a particular pixel, and the lighting 
conditions change as well. Thus, multiple adaptive 
Gaussians are required. We use an adaptive mixture of 
Gaussians to approximate this process. Each time their 
parameters are updated, the Gaussians are evaluated using 
a simple heuristic method to hypothesis which ones are 
most likely to be part of the ‘background process’. Pixel 
values that do not match one of the pixel's ‘background’ 
Gaussians are grouped using connected components. 
In the histogram (Figure 1) showing the grey-values of a 
single pixel over time we can observe several peaks, and 
the graph can be approximated well by a mixture of 
Gaussian functions.  
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Figure 1: Histogram for grey-values of a single pixel for a short period. 

(Horizontal axis: pixel brightness; vertical axis: no. of occurrences.) 
 

If we assign probabilities to the pixel values according to 
the histogram, and Xt denotes a single pixel value at time 
t, the matching can be expressed as 
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where η( Xt , µ i,t , U i,t) is a Gaussian function with 
expected value µ i,t and deviation U i,t. However it is a 
very time-consuming operation to store and refresh a 
histogram for every pixel, and the Gaussian matching 
expectation maximization (EM) process would be corres-
pondingly slow. Stauffer [18] recommended a real-time 
algorithm in which the parameters of the Gaussians are 
evaluated using a simple heuristic method to hypothesis 
which is the most likely to be part of the ‘background 
process’. Every pixel value Xt is checked against the 
existing K Gaussian distributions until a match is found. 
A match is defined as a pixel value within 2.5 standard 
deviations of the distribution mean. If none of the K 
distributions match the current pixel value, the least 
probable distribution is replaced with a distribution with 
the current value as its mean value a, an initially high 
variance, and low prior weight. After the classification of 
the current pixel value the model is re-estimated. The 



weight of the matched component will be increased and 
other weights decreased. The µ i,t and U i,t parameters are 
also modified. The ‘raw’ output of the algorithm is a 
grainy binary-level foreground-background image (Figure 
2c). We then use morphological operators to eliminate the 
grain, and obtain Figure 2d. To reduce the amount of 
computation, further processing is done only in image 
regions where moving objects have been detected. 
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Figure 2: (a) The input image (b) an image composed of the means of 

the most probable Gaussians in the background model (c) the foreground 
pixels (d) the foreground pixels after median filtering and using dilations 
 
3.  Symmetry extraction 
 
There are two main computation methods used for 
symmetry extraction:  
� The Generalized Symmetry Operator applies distance 

weight function (affected by spacing), a phase weight 
function (affected by edge direction), and a 
logarithmic mapping of the intensity of points [15]. 

� The shock-based method, calculating symmetries by 
parallel waves propagating from the ridge [16]. 

In our proposed method [21], based on the latter 
approach, simulation of wave propagations from the 
edges and measurement of the collision points of two 
waves calculates the symmetry map of the object, as 
demonstrated in Figure 3. Simple morphological 
operators –dilatations – are used for the simulation of 
wave propagation. We call the resulting image the map of 
Level 1 symmetries. 
 

          
 

Figure 3: A simple object; and waves of dilatation after 10, 20, and 25 
iterations, showing the derived symmetry axis 

 
 

3.1 Extended symmetry extraction 
 
The symmetry operator usually employs as its input the 
edge map of the object (Canny method). For simple 
binary edge maps, erroneous symmetry maps may be 
obtained in case of fragmented object-edges. The method 
can however be improved by the use of grey-level mode, 
in which we can add ‘weights’ to the object-edges in the 
image. The lengths of edge fragments are measured by 
using a flood-fill algorithm, and then each edge and wave 
will be weighted by a factor depending on the 
corresponding edge-fragment length. The computation of 
grey-level mode, similarly to the simulation of binary 
wave propagation, can be performed by using a grey-level 
morphological operator (max filter). The advantage is that 
the ‘higher’ waves can non-destructively overlap the 
‘lower’ ones. With this solution, fragmented edges do not 
cause so many errors; an example of the improved result 
is shown in Figure 4. Other discontinuous errors can be 
minimised using vertical closing operators. This post-
processing step is described in the next section, where we 
define the symmetry levels. 
 

 
 

Figure 4: Horizontal symmetries of an artificial input image (left). The 
centre image is the result of binary wave propagation; while on the right 

is shown the result of grey-level wave propagation. With the latter 
method fragmented edges cause fewer errors, and the symmetry axis can 

be successfully extracted. 
 

3.2 Deriving symmetry levels 
 
As illustrated in Figure 5, the symmetry concept can be 
extended by iterative operations. The symmetry of the 
Level 1 symmetry map is the Level 2 symmetry map; and 
the symmetry of the Level 2 map shows the Level 3 
symmetry (L3S). The advantage of this approach is that it 
does not confound the local and global symmetries in the 
image, so these levels are truly characteristic for the 
shape-structure. Our symmetry-extraction method is less 
sensitive to edge fragmentation than is the original 
“skeleton” method; but nevertheless the L3Ss do contain 
an accumulation of fragments from the preceding 
symmetry levels. To reduce this error we use vertical 
limiting operators at each level of processing. In addition, 
using vertical kernels (height greater than width) is 
effective when the objects are small and near to other one 
on the image. The vertically-oriented kernels help to 
avoid possible confusion with nearby neighbouring 
symmetries. 



    
 

Figure 5: A simplified outline of the human body, and its symmetry-
levels. The Level 1 symmetry map (2nd image) is the symmetry map of 
the extracted edge map. The Level 2 map (3rd image) is the symmetry 

map of the Level 1 map, and the last image shows the Level 3 symmetry 
map derived from the Level 2 map. 

 
3.3 Applying third-level symmetries 
 
We have found that if higher-level symmetries are 
calculated and tracked temporally then the third-level 
symmetries form a pattern, which pattern is uniquely 
characteristic for human locomotion (walking) [20], see 
figure 6.  
 

 
 

Figure 6:  Spatio-temporal patterns formed by the tracking of third-level 
symmetries of pedestrians. 

 
The previously extracted third-level symmetries are prim-
arily presented between the legs, when the image is that 
of a human. The arms do not usually generate significant 
symmetries, among other reasons because of distortions 
arising from the perspective view, and because of their 
relatively small size in proportion to the whole body. 
However, the existence of these symmetries in an image 
does not provide usable information about the content; for 
this, we have to track the changes of these symmetry 
fragments over time. 
The method described in [20] can detect pedestrians with 
a promisingly high success rate (96.5%). In the proposed 
method we use these classification results to eliminate 
falsely-detected objects. 
 
4. Characteristic points 
 
Our previous work [17] introduced a point-cloud method 
for stochastic point selection and coupling the points to 
moving objects. In our experiments, we have found that 
using some structural information for tracking and 
grouping points can increase the final accuracy. This new 
structural information is obtained from the symmetry 
properties of the objects. The symmetry is a derived 
feature so its tracking can be achieved by the tracking of 

its components, which are the contour points. The 
proposed method uses the symmetry maps and the 
gradient of the contour in combination. 
First we define dual-points around the symmetry axis. 
Dual-points are defined as a detected feature point on one 
edge, together with a corresponding point on the opposite 
side of the symmetry axis. Dual points are connected to 
each other by a distance parameter, which is the sum of 
the radii of the extracted first-level symmetry axes. 
 
4.1 Pairing points on both sides of first-level 
symmetries 
 
The initial step of tracking collects points into two sets. 
One set contains the ‘left’ points, and the other the ‘right’ 
points (left and right refer to the corresponding parts of 
the symmetry). Another useful piece of information is the 
radius of symmetry; this distance can define a relation 
between the two parts. Thus we can connect the opposite 
points using the distance condition, and we call these a 
‘dual point’. In the course of tracking we take account of 
this condition. Thus a dual point denotes one symmetry 
point of a symmetry axis and two contour points of the 
shape. The main symmetry axis can be seen in Figure 7a; 
Figure 7b shows the dual points, and the resulting 
regression lines can be seen in Figure 7c. During tracking, 
these points should be moved to preserve the dual and 
symmetry properties. Since dual points were registered 
with respect to the contours, their matching property is the 
gradient of edges, as seen for the data in Figure 7b.  
Our aim was to avoid the usual problems of silhouette 
tracking, namely the problem of occluded objects, 
partitioned edges etc. We exploit the main characteristics 
of the silhouettes of pedestrians; parallel behaviour of 
shapes, and the fact that motion is usually perpendicular 
to the main axis. On the other hand, we try to avoid the 
uncertainties resulting from points slipping forwards and 
backwards on the edges. 
One of the main advantages of this approach is that it is 
able to directly track the points of a given shape with 
extremely low computation time, because it only has to 
match the relevant point pairs. The disadvantage is similar 
to that for other matching methods: searching for the 
matching points may result in more than one good fitting. 
 

         
 

       (a) main axis       (b) dual points    (c) regression lines 
Figure 7: Demonstration of dual points 

 



The dual points will be deleted if there is no acceptable 
matching point, but by employing the other points of the 
object it is easy to recover from this with a new 
symmetrical pair of points. To update and improve the 
objects we check the extension of the collimated axis. The 
points to be added to the object have to be disposed at a 
similar radius. 
Having the set of feature points, and taking into account 
the already detected features (symmetry axis, radii, and 
edges of the legs), a dual-point can be defined on the edge 
on the opposite side to the symmetry axis. 
 
4.2 Tracking the points: ‘birth’, ‘death’ and 
transitions 
 
In the tracking of features, the dual-points are used to 
assist the tracking of the first-level symmetry axes. 
Firstly, a gradient-based method searches for dual-points 
in the current frame. If one point of a dual-point pair has 
been lost then, using the distance parameter, the algorithm 
searches for a new point on the edge-map in the current 
frame. A counter-value is recorded for each dual-point, 
which counts how many times one of the dual-point pair 
has been lost. If the value reaches a predefined limit, then 
the corresponding dual-point will be deleted from the set 
of valid dual-points. It can be seen in Figure 8 that the 
algorithm is capable of tracking partially-occluded 
objects; the dual-points can track an object for some time 
even if the symmetry axis disappears. If the cardinality of 
the set of dual-points is less than a predefined parameter 
value, the algorithm tries to find new characteristic points 
on the object edges, corresponding to the symmetry map. 
Therefore, as the object emerges from an occlusion more 
and more dual-points are found on it, and can be used to 
track it. 
 

 
Figure 8: Initialization and updating of dual-points 

 
The proposed algorithm was tested on video image-
sequences captured by standard cameras (resolution 
720×576 pixels, frame rate 24 frames/sec). In Figure 9 
some typical detection results are shown. Five persons 
appear in this image; the proposed algorithm can success-
fully detect the legs of four of them, even in the case of 
occlusion. For the fifth person, it was not possible to 
extract the edges; the Canny edge detector method could 
not detect them even if the threshold was set to zero. 
Even so, based on experiments on 400 test videos 
followed by comparisons using human evaluation of the 
same images, the successful detection rate of legs was 

found to be about 80%, while the false-detection rate was 
about 15%. 
 

 
 

Figure 9: Detection results 
 
3.  Conclusion 
 
The above-described method can detect and track 
symmetrical objects, and even in practical conditions 
human legs can be recognised with a high rate of success. 
In determining the accuracy, we have the difficulty that 
the level of acceptability is somewhat subjective. Never-
theless, in the test videos we measured about an 80% true 
detection rate and a 15% false detection rate. We have 
found that the method can track the motion of legs as long 
as the shapes are visible, and the algorithm works in real-
time using images obtained in practical outdoor 
circumstances.  
Our ultimate goal is to use pure biometric registration 
derived from images obtained from a multi-camera 
surveillance system [19]. The described feature extraction 
and tracking method will form the basis of future work on 
tracking pedestrians by using biometric information 
derived from real scenes. 
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