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Abstract— In the paper we introduce an algorithm for matching 
partially overlapping image-pairs where the object of interest is 
in motion, even if the motion is discontinuous and in an 
unstructured environment. In our previous work [10] we have 
shown that by using co-motion statistics matching of overlapping 
views can be done and then the projective geometry can be 
estimated. Here we will show how to optimize searching for 
concurrently moving pixels. The robust algorithm we describe 
here finds point correspondences in two images by using entropy-
based thresholding and without searching for any structures and 
without the need for tracking continuous motion. Our method 
makes it possible to (re)calibrate multicamera systems without 
human assistance. 
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I.  INTRODUCTION  
Computer-assisted observation of human or vehicular traffic 
movements using multiple cameras is now a subject of great 
interest for many applications; examples are semi-mobile 
traffic control using automatic calibration, or tracking of 
humans in a surveillance system. In case of scenes including 
several objects in random motion, successful registration of 
images from separate cameras conventionally requires some a 
priori object definition or some human interaction. In a typical 
outdoor scene multiple objects, such as people and cars, move 
independently on a common ground plane. Transforming the 
activity captured by separate individual video cameras from 
the respective local image coordinates to a common spatial 
frame of reference is a prerequisite for global analysis of the 
activity in the scene. 
To estimate the object location in a scene we must know or 
estimate the calibration matrices for each camera in the 
system. Usually an algorithm for the alignment of different 
views and calibration of cameras has the following steps: 

1. Feature detection; 
2. Extraction of candidate point-pairs; 
3. Rejection of outliers and estimation of the model that 

does the alignment; 
4. Alignment of different views; 
5. Estimation of epipolar geometry. 

In the paper we will present an algorithm for the first four 
steps of the above general schema. Having the point 
correspondences extracted the estimation of epipolar geometry 
can be done by well-known algorithms [1][8][10]. 

Matching different images of a single scene may be difficult, 
because of occlusion, aspect changes and lighting changes that 
occur in different views. Still-image matching algorithms 
[2][3][4][5] search for still features in images such as: edges, 
corners, contours, color, shape etc. They are usable for image 
pairs with small differences; however they may fail at 
occlusion boundaries and within featureless regions. They 
may fail if the chosen primitives or features cannot be reliably 
detected. The views of the scene from the various cameras 
may be very different, so we cannot base the decision solely 
on the color or shape of objects in the scene. 
In a multi-camera observation system the video sequences 
recorded by cameras can be used for estimating matching 
correspondences between different views. Video sequences in 
fact also contain information about the scene dynamics 
besides the static frame data. Scene dynamics is an inherent 
property of the scene independently of the camera positions, 
the different zoom-lens settings and lighting conditions. 
References [6] and [7] present approaches in which motion-
tracks of the observed objects are aligned. However, in these 
cases a robust capability for object tracking is assumed; and 
this is the weak point of both methods.  
As a previous work the use of co-motion statistics for the 
estimation of projective geometry was introduced in [9][10]. 
The approach proposed in [10] is an extension, albeit a 
considerable one, of the previously mentioned sequence-based 
image matching methods for non-structured estimation [6][7].  
In [9][10] we have introduced the use of co-motion statistics 
for the matching and alignment of two overlapping views and 
estimation of the common groundplane. In that approach, 
instead of the trajectories of moving objects, the statistics of 
concurrent motions – the so-called co-motion statistics – were 
used to locate matching points in pairs of images. The inputs 
of the system are video sequences derived from cameras 
located in fixed positions; however, the actual camera 
positions, orientations, and zoom settings are unknown. The 
main advantage of the use of co-motion statistics that no a 
priori information about motion, objects or structures is 
needed. The disadvantage of co-motion statistics is that the 
system needs huge memory for storing it. 

The purpose of our paper is to present an algorithm for the 
efficient estimation of co-motion point-pairs and a robust 
feature extraction method. In the presented algorithm less 
memory is needed for coding scene dynamics, the calculations 
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have been done on-line. We also have tested new entropy-
based methods for the definition of changes of importance to 
extract features. 

II. MATCHING OF IMAGES 
The algorithm described here is based on the use of co-motion 
statistics for matching images [10]. The steps of the algorithm 
are the following: 

1. Detect changes. 
2. Store changes that the dynamics of the scene can be 

reconstructed later. 
3. Extract point-correspondences from the stored scene 

dynamics – detection of features, extraction of 
candidates, rejection of outliers. 

Do the alignment of the cameras’ views. 

A. Co-motion statistics 
Scene dynamics is encoded in co-motion statistics, so if 

static features (corners, edges etc.) cannot be reliably detected 
the information for matching can be extracted from co-motion 
statistics [9][10].  

In case of single video sequence a motion statistical map 
for a given pixel can be recorded as follows: when motion is 
detected in a pixel, the coordinates are recorded of all pixels  
where motion is also detected at that moment. In the motion 
statistical map the values of the pixels at the recorded 
coordinates are updated. After all, this statistical map is 
normalized to have global maximum equal to 1. 
In case of stereo video sequences to each point in the images, 
two motion-statistic maps are assigned: a local and a remote. 
Local map means the motion-statistical map in the image from 
the pixel is selected, the remote motion-statistical map is refer 
to the motions in the other image. After the motion detected 
on the local side, for the points defined by the local motion 
map the local statistical map updated by the local motion map. 
For each point where motion is detected on the local side, the 
local motion map of the remote side updates the 
corresponding remote statistical map. An example of co-
motion statistics for inlier point-pairs can be seen in Figure 1. 

 
Figure 1 Top images: example of co-motion statistics for inlier point-pairs. 

Below: a corresponding point-pair is shown in the images of the left and right 
cameras. 

The advantage of this interpretation of the scene dynamics 
is that point correspondences in the above case were interpreted  
as maximums of statistical maps and their extraction is very 
simple. The main disadvantage of co-motion statistics is that 
the system must keep two statistical maps (grayscale pictures) 

for each pixel of input image, which means that the algorithm 
needs huge memory, in case of 160*120 statistical map 
resolution it means 1,4 GBs! 

B. Coding scene dynamics 
Having the result of change detection the scene dynamics 

can be coded and stored. To overcome the problem that huge 
memory is needed for storing co-motion statistics we propose 
to store the motion history in a vector for each pixel instead of 
storing an image-size map for each of them as in [9][10]. This 
motion history vector has as many entries as long is the video 
sequence and in each of its entry has 1 if change was detected 
at the given frame or zero if not. This coding reduces the 
memory needs while the scene dynamics is also coded in the 
vectors. The disadvantage is that for the extraction of point 
correspondences all the motion histories of cameras must be 
compared. Because of information loss after thresholding in 
change detection we compared this “binary” series to “real-
valued” series in which the value of two frames’ absolute 
difference is stored instead of 1 or 0 for pixel (x,y). The 
advantage of this method is that less memory is needed for the 
storage of scene dynamics than in the case of co-motion 
statistics: 2.3 MB for using binary series and 18 MB for using 
“real-valued” series in case of 500 frame long image sequence, 
while for the storing of co-motion statistics 1,4 GB is needed. 

C  Extraction of point correspondences 
Usually the estimation of point correspondences in two 

given images consists of three steps. Firstly, features are 
detected then candidates of point pairs are extracted and, 
finally the outliers are rejected and the given model is 
estimated. 

C.1  Feature detection 
From the images of the two views we extract feature points 

related to pixels of real objects (cars, people etc.) moved 
through them. We don’t want to extract pixels in which 
change was detected due to flashings or random noise on the 
background. For the extraction of these points we have 
compared two methods. In the first method we are integrating 
the motion histories. If this value is above some threshold then 
the corresponding pixel is selected as a feature point. This 
method is very sensitive to the threshold value. 

In the second we have calculated the Shannon entropy of 
pixels’ motion history vectors.  

)(log)( ii xpxpentropy ∑−=  (1)
where p(xi) is the frequency of xi in vector v, v – real-

valued motion history vector.  Our experiments with different 
indoor and outdoor videos showed that the entropy of motion 
history vectors of flashings and other random noise will very 
“high” – about 0.4-0.5, while the entropy of motion history of 
deterministic motion of real object will lower – it will be a 
value between 0 and 0.2. 

Instead of traditional definition of entropy for vector v, we 
have also tested the formula for the estimation of the 
“entropy”: 

ii vv
N

entropy log
)log(

1* ∑−=  (2)
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where vi are the elements of the history vector v, N – the 
length of history vector v . Applying this formula is not a 
serious restriction to our algorithm. The meaning of its output 
is similar to that of the output of the traditional formula. If in a 
given pixel the system is observing only small flashings then 
the value of entropy* will be high (logarithm of a small 
number is large number in absolute value). If object is moving 
through the pixel then the detected change will be much 
higher then in case of flashings and the value of entropy* will 
be low (logarithm of a large number is small). The thresholds 
that were used for selecting candidate points were shifted, the 
new interval is [0.1,0.32] for the extraction of feature points. 
The main advantage of formula (2) against (1) that it can be 
calculated on-line, from frame to frame as the implemented 
change detection algorithm. 

It is obvious that if all our candidate points are from the 
same region of input images and close to each other then small 
error in point coordinates (which comes from the change 
detection, which is, of course, not perfect) will result in great 
error in final alignment of the whole images. To reduce it we 
forced points to be better distributed in the region by 
introducing some structural constraints: images are divided 
into blocks of n*n and for each block the algorithm searches 
for only one candidate point, for which the integrate of motion 
history is the maximum and its entropy is within a given 
interval. 

C.2  Extraction of candidate point pairs 
Having the features points detected in both views for the 

extraction of candidate point-pairs the feature points of 
different views must be compared. For the comparison of 
feature points, the corresponding motion history vectors in our 
case, we have implemented different methods for binary and 
real-valued motion history vectors. 

In the case of real-valued motion history vectors the 
extraction of candidate point pairs is based on the calculation 
of the correlation between a given feature point and feature 
points of the other view.  

In the case of binary motion history the time-series of the 
history-vectors are filtered. This morphological filter removes 
single peaks and groups neighbor peaks if they are within a 
predefined distance. After filtering the Hamming distance is 
calculated as correlation between two binary motion history 
vectors of different views. 

C.3  Robust estimation of the model and rejection of outlier 
For the estimation of transformation P that maps points of 

one scene onto another and rejection of outliers from the set of 
candidate point-pairs we have implemented the RANSAC 
algorithm [8][10]. In our experiments people and cars are 
moving on the groundplane. In this case P is a projective 
transformation that can be represented by a 3*3 matrix and 
can be calculated from at least 4 point-pairs. 

III. EXPERIMENTAL RESULTS 
The above-described algorithms were tested and compared on 
videos captured by two cameras, having partially overlapping 
views, at Gellert (GELLERT videos) square in Budapest. The 
GELLERT videos are captured at resolution 160×120, at same 
zoom level and with same cameras. 

An example of the extracted inlier points can be seen in Figure 
2. 
 

 
Figure 2 Inliers for the real-valued motion history vectors and on-line entropy 
based feature extraction (left image); and for the binary motion history vectors 

and on-line entropy based feature extraction (right image). 

 
The results of alignment are compared for five 
transformations: T1 - the point correspondences are extracted 
by using binary motion history and thresholding of integrated 
motion history for feature extraction; T2 - the point 
correspondences are extracted by using binary motion history 
and on-line entropy for feature extraction; T3 - the point 
correspondences are extracted by using real-valued motion 
history and thresholding of integrated motion history for 
feature extraction; T4 - the point correspondences are 
extracted by using real-valued motion history and Shannon 
entropy for feature extraction; T5 - the point correspondences 
are extracted by using real-valued motion history and on-line 
entropy for feature extraction. 
For the exact comparison of the obtained results we have 
estimated a reference image alignment transformation P1 
based on manual feature point selection in the input images. 
100 reference points were created with reference 
transformation P1 in both images. Then the symmetric transfer 
errors (STE) [8] of transformations T1-T5 on the set of 
reference points were calculated. The results of comparison 
are shown in Table1. 
 
Table 1 The average of symmetric transfer errors (STE) for the 
obtained transformations (see the text). 

Transformatio
n 

Average STE Min STE Max STE 

T1 13,40 0,73 39,40 
T2 6,54 0,44 17,27 
T3 11,18 0,88 36,23 
T4 9,00 0,63 52,57 
T5 7,15 0,16 28,22 

 
As it can be seen from the results of Table 1, algorithms T2, 
T4, T5 performed well (T2 is the best), in which the feature 
selection is entropy-based,. This is because in the entropy-
based feature selection the entropy of motion history series 
measures the “quality” and not only the quantity of motion 
through the pixel. Pixels with low value of integrated motion 
history also can be extracted. The result of final alignment is 
shown in Figure 3. 
 

 Figure 4 shows the results of final alignment with 
transformation T2 for the FERENCIEK videos. FERENCIEK 
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videos are captured at Ferenciek square in Budapest at 
resolution 320×240, at different zoom levels and with 
different cameras. 

IV. CONCLUSIONS 
We have shown that partially overlapping camera views 

can be registered by motion history vectors of images’ 
reference pixels of outdoor cameras placed in freely-chosen 
positions, viewing arbitrary scenes where motion is present, 
and this matching is automatic without any human interaction. 
The main advantage of the presented algorithm is that it does 
not need a priori information about objects or structures. We 
have shown that the entropy of motion history vectors 
unequivocally defines the threshold for the selection of feature 
points. To speed up the calculations we used motion-history in 
the comparison and this history is captured by defining an on-
line entropy while the final alignment remains quite 
acceptable. 
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Figure 3 Final alignment of two views with transformation T2 for the GELLERT videos. 

 
Figure 4 Final alignment of two views with transformation T2 for the FERENCIEK videos. 
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