Change Detection in Optical Aerial Images by a Multi-Layer Conditional Mixed Markov Model

¹Distributed Events Analysis Research Group Computer and Automation Research Institute, Hungary

²ARIANA joint Project-team INRIA/CNRS/UNSA, Sophia Antipolis, France

Seminar at Florida State University, Department of Statistics, Tallahassee, 16 December 2008

Benedek and Szirányi (SZTAKI, INRIA)

Change Detection in Aerial Photos

Content

Introduction

- Feature extraction and integration
 - Global intensity statistics
 - Local block correlation
 - Feature integration
- 3 A Mixed Markovian image segmentation model
 - Introduction to mixed Markov models
 - Proposed model

Experiments

Content

Introduction

- 2 Feature extraction and integration
 - Global intensity statistics
 - Local block correlation
 - Feature integration
- A Mixed Markovian image segmentation model
 Introduction to mixed Markov models
 - Proposed model

Experiments

The Sec. 74

< A >

Introduction, research goals

- Change detection in optical aerial image pairs
 - new built-up regions, building operations
 - planting of trees, fresh plough-land
 - groundwork before building-over etc
- Large (many years) time differences → different seasons, illumination conditions, vegetations etc.
- Input preliminary registered orthophotos:

Image 1 (G_1)

Image 2 (G_2)

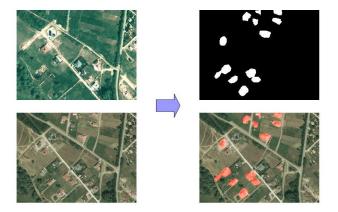
Benedek and Szirányi (SZTAKI, INRIA)

Change Detection in Aerial Photos

E N 4 E N

Task formulation

- Binary image segmentation problem:
 - Classifying each pixel *s* of the image lattice *S* as 'change' (below: white) or 'background' (i.e. unchanged, with black)



Content

Introduction

Feature extraction and integration

- Global intensity statistics
- Local block correlation
- Feature integration

A Mixed Markovian image segmentation model Introduction to mixed Markov models

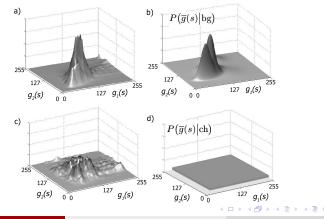
Proposed model

Experiments

12 N A 12

Feature definition

- Global statistics of intensity co-occurrences
 - Feature vector of pixel s is pair of intensity values of s in the two images: g(s) = [g₁(s), g₂(s)]^T, g₁(s) ∈ G₁, g₂(s) ∈ G₂
 - Global statistics in changed/background regions:



Change Detection in Aerial Photos

Feature density modeling

- Multi-Gaussian Intensity-based (MGI) change detection: 'change' class is modeled by a 2-D uniform pdf, while 'background' with a mixture of Gaussians in the g(s) feature space
 - Class 'background':

$$P(\overline{g}(\mathbf{s})|\mathrm{bg}) = \sum_{i=1}^{K} \kappa_i \cdot \eta(\overline{g}(\mathbf{s}), \overline{\mu}_i, \Sigma_i)$$

• using fixed K (e.g. K = 5) and EM parameter estimation

• Class 'change':

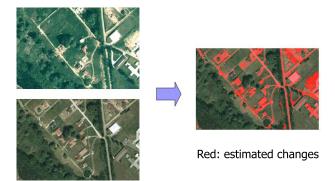
$$\mathsf{P}(\overline{g}(s)|ch) = \begin{cases} \frac{1}{(b_1 - a_1) \cdot (b_2 - a_2)}, & \text{if } \overline{g}(s) \in \Gamma \\ 0 & \text{otherwise,} \end{cases}$$

• where $\overline{g}(s) \in \Gamma$ iff $a_1 \leq g_1(s) \leq b_1$ and $a_2 \leq g_2(s) \leq b_2$

Validation of the Intensity Feature

Result of the intensity based ML pixel classification

$$\phi_{oldsymbol{g}}(oldsymbol{s}) = \mathrm{argmax}_{\psi \in \{\mathrm{ch}, \mathrm{bg}\}} oldsymbol{P}ig(\overline{oldsymbol{g}}(oldsymbol{s})ig|\psiig)$$



False alarms in textured image regions

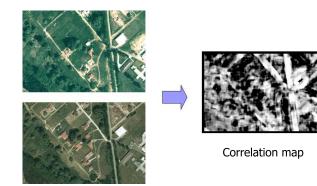
Benedek and Szirányi (SZTAKI, INRIA)

Change Detection in Aerial Photos

4 **A** N A **B** N A **B** N

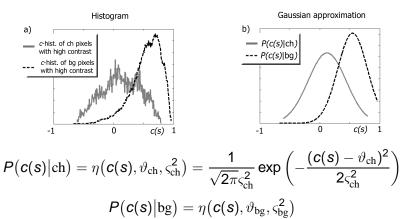
Feature extraction 2

- Second feature: local block correlation
 - c(s): normalized cross correlation between the v × v neighborhoods of pixel s in G₁ resp. G₂ images (used v = 17).



Feature extraction 2

Feature statistics

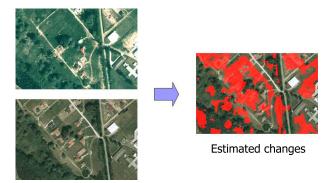


∃ ► < ∃ ►</p>

Feature extraction 2

Result of the correlation based ML pixel classification

$$\phi_{\boldsymbol{c}}(\boldsymbol{s}) = \operatorname{argmax}_{\psi \in \{\operatorname{ch}, \operatorname{bg}\}} \boldsymbol{P}(\boldsymbol{c}(\boldsymbol{s}) | \psi)$$



False alarms in homogenous image regions

Benedek and Szirányi (SZTAKI, INRIA)

Change Detection in Aerial Photos

A B F A B F

Feature of feature selection

- Feature selection based on local contrast
 - ν_i(s), i ∈ {1,2}: variance of the gray levels over the v × v neighborhood of s in G_i
- Joint variance vector: $\overline{\nu}(s) = [\nu_1(s), \nu_2(s)]^T$
- Local variance (contrast) maps:

 $\nu_{1}(.)$

 $\nu_{2}(.)$

EN 4 EN

• Partitioning the pixels of the 'training' image pairs:

$$S_{\nu_1,\nu_2} = \{s \in S | \nu_1(s) \approx \nu_1, \ \nu_2(s) \approx \nu_2\}$$

• Reliability 'histogram' of the intensity map ϕ_g :

$$h_g[\nu_1, \nu_2] = \frac{\text{number of correctly classified pixels in } S_{\nu_1, \nu_2}}{\text{number of erroneously classified pixels in } S_{\nu_1, \nu_2}}$$

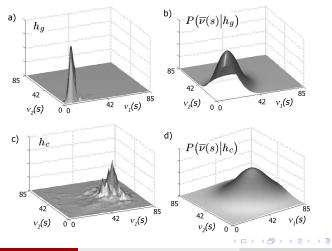
• Reliability 'histogram' of the correlation map ϕ_c :

$$h_{c}[\nu_{1}, \nu_{2}] = \frac{\text{number of correctly classified pixels in } S_{\nu_{1}, \nu_{2}}}{\text{number of erroneously classified pixels in } S_{\nu_{1}, \nu_{2}}}$$

Benedek and Szirányi (SZTAKI, INRIA)

The Sec. 74

 Reliability histograms h_g and h_c with 2-D Gaussian density approximations:



Benedek and Szirányi (SZTAKI, INRIA)

Change Detection in Aerial Photos

• Gaussian models for the reliability of the *g*/*c* features:

$$P(\overline{\nu}(s)|h_g) = \eta(\overline{\nu}(s), \overline{\mu}_g, \overline{\overline{\Sigma}}_g)$$

$$P(\overline{\nu}(s)|h_c) = \eta(\overline{\nu}(s), \overline{\mu}_c, \overline{\overline{\Sigma}}_c)$$

 Contrast-based feature selection-map (red where the correlation feature is estimated as more reliable):

$$\phi_{\nu}(\mathbf{s}) = \operatorname{argmax}_{\chi \in \{\mathbf{g}, \mathbf{c}\}} \mathcal{P}(\overline{\nu}(\mathbf{s}) | \mathbf{h}_{\chi}).$$

Benedek and Szirányi (SZTAKI, INRIA)

Change Detection in Aerial Photos

16 December 2008 16 / 37

Feature integration

- Initial feature integration rule:
 - ϕ_* : final change mask

$$\phi_*(\mathbf{s}) = \begin{cases} \phi_{\mathbf{g}}(\mathbf{s}) & \text{if } \phi_{\nu}(\mathbf{s}) = \mathbf{g} \\ \phi_{\mathbf{c}}(\mathbf{s}) & \text{if } \phi_{\nu}(\mathbf{s}) = \mathbf{c} \end{cases}$$

• Result of the pixel-by-pixel approach:

output $\phi_*(s)$ map

ground truth

Observation: improved, but still noisy result

Towards a Robust Segmentation Approach

- Global labeling optimization over the image instead of pixel-by-pixel segmentation
 - pixel level feature descriptions
 - interaction constraints between neighbouring pixels
- Conventional Markov Random Field approaches must be extended:
 - multi layer model for considering the different label maps
 - particular role of the $\overline{\nu}(s)$ feature:
 - switching ON and OFF the $\overline{g}(s)$ respectively c(s) features into the integration process
 - data dependent dynamic links are needed in the graph
 - application of Mixed Markov models

• □ ▶ • @ ▶ • E ▶ • E ▶

Content

Introduction

- 2 Feature extraction and integration
 - Global intensity statistics
 - Local block correlation
 - Feature integration

A Mixed Markovian image segmentation model

- Introduction to mixed Markov models
- Proposed model

Experiments

12 N A 12

- 2-D pixel lattice \rightarrow graph: S = {s}
 - nodes: image points (s is a pixel)
 - edges: interactions \rightarrow cliques

Lattice S

- Goal: generate a K-colored segmented image, with segmentation classes: L = {C₁,..., C_K}
 - Here: K = 2; C_1 =change and C_2 =background.
- f_s : local feature observed at pixel s
- ω_s: label of pixel s which marks its segmentation class
- Segmentation with Markov Random Fields (MRF):
 - Pixels' feature-values must agree with the class models specified by their label:
 - Classes are characterized by probability density functions e.g. $P(f_s|\omega_s = \text{background}).$
 - Segmented image is "smooth": We penalize, if two neighboring pixels have different labels

< 日 > < 同 > < 回 > < 回 > < 回 > <

- 2-D pixel lattice \rightarrow graph: S = {s}
 - nodes: image points (s is a pixel)
 - edges: interactions \rightarrow cliques

```
Lattice S
```

- Goal: generate a K-colored segmented image, with segmentation classes: L = {C₁,..., C_K}
 - Here: K = 2; C_1 =change and C_2 =background.
- *f_s*: local feature observed at pixel s
- ω_s: label of pixel s which marks its segmentation class
- Segmentation with Markov Random Fields (MRF):
 - Pixels' feature-values must agree with the class models specified by their label:
 - Classes are characterized by probability density functions e.g. $P(f_s|\omega_s = \text{background}).$
 - Segmented image is "smooth": We penalize, if two neighboring pixels have different labels

< 日 > < 同 > < 回 > < 回 > < 回 > <

- 2-D pixel lattice \rightarrow graph: S = {s}
 - nodes: image points (s is a pixel)
 - edges: interactions \rightarrow cliques

```
Lattice S
```

```
000000
000<del>0</del>000
000000
000000
```

- Goal: generate a K-colored segmented image, with segmentation classes: L = {C₁,..., C_K}
 - Here: K = 2; C_1 =change and C_2 =background.
- *f*_s: local feature observed at pixel s
- ω_s: label of pixel s which marks its segmentation class
- Segmentation with Markov Random Fields (MRF):
 - Pixels' feature-values must agree with the class models specified by their label:
 - Classes are characterized by probability density functions e.g. $P(f_s|\omega_s = \text{background}).$
 - Segmented image is "smooth": We penalize, if two neighboring pixels have different labels

- Global labeling: $\underline{\omega} = \{\omega_s | s \in S\}\}$
- Observation process: $\mathcal{F} = \{f_s | s \in S\}$
- MAP estimation of the optimal global labeling:

$$\underline{\widehat{\omega}} = \operatorname{argmax}_{\underline{\omega} \in \Omega} P(\underline{\omega} | \mathcal{F})$$

where Ω denotes the set of all the possible global labelings.

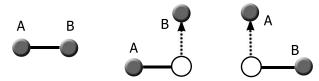
 (Hammersley-Clifford theorem): P(<u>ω</u>|F) can be factorized into individual terms whose domains are the cliques of the graph.

$$P(\underline{\omega}|\mathcal{F}) \propto \underbrace{\prod_{s \in S} P(f_s|\omega_s)}_{P(\mathcal{F}|\underline{\omega})} \cdot \underbrace{\frac{1}{Z} \exp\left(-\sum_{C \in \mathcal{C}} V_C(\underline{\omega})\right)}_{P(\underline{\omega})}$$

• where C is an arbitrary clique and V_C is the potential of C.

Step forward to Mixed Markov models

- In MRFs two nodes directly interact if and only if they are connected by a (static) edge
- In Mixed models the connections can also be data dependent
- Two types of nodes:
 - regular nodes: same role as nodes of MRF's
 - address nodes: their 'labels' are pointers to regular nodes
- Regular nodes A and B may interact iff they are connected by (i) a (static) edge OR (ii) a chain of a static edge and a dynamic address pointer



Three cases when A and B regular nodes may interact (address nodes are marked by white circles, edges by lines, pointers by dotted arrows)

Benedek and Szirányi (SZTAKI, INRIA)

Change Detection in Aerial Photos

Probability modeling in Mixed Markov models

• A priory probability of a global labeling:

$$\mathsf{P}(\underline{\omega}) = rac{1}{Z} \mathsf{exp}\left(-\sum_{C \in \mathcal{C}} \mathsf{V}_{C}\left(\omega_{C}, \omega_{C}^{\mathcal{A}}
ight)
ight)$$

• where C is a clique and ω_C is the set of labels inside C:

$$\omega_{\mathsf{C}} = \{\omega(q) | q \in \mathsf{C}\}$$

while ω^A_C is the set of node labels pointed by the address nodes of clique C:

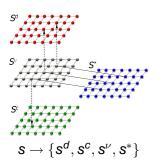
$$\omega_{\boldsymbol{C}}^{\mathcal{A}} = \{ \tilde{\omega}(\boldsymbol{a}) \big| \boldsymbol{a} \in \mathcal{A} \cap \boldsymbol{C}, \omega(\boldsymbol{a}) \neq \text{nil} \}$$

A is the set of address nodes and ω̃(a) = ω(ω(a)) for a ∈ A

Benedek and Szirányi (SZTAKI, INRIA)

伺い イヨン イヨン ニヨ

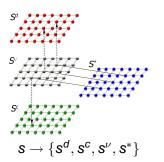
4-layer Mixed Markov model for Change Detection



- Regular layers
 - S^g , S^c : change masks based on the $\overline{g}(s)$ resp. c(s) features
 - S*: combined layer output change mask
- Address layer
 - S^ν: switch layer providing configurable, data-driven inter-layer connections

- Node labels: $\omega(s^i)$: $i \in \{d, c, \nu, *\}, s \in S$
- Cliques and clique potentials:
 - Singletons: data label consistency
 - Intra-layer connections: smooth label maps V_c
 - Inter-layer interactions: label fusion V_{C₂}

4-layer Mixed Markov model for Change Detection



- Regular layers
 - S^g , S^c : change masks based on the $\overline{g}(s)$ resp. c(s) features
 - S*: combined layer output change mask
- Address layer
 - S^ν: switch layer providing configurable, data-driven inter-layer connections

(日)

- Node labels: $\omega(s^i)$: $i \in \{d, c, \nu, *\}, s \in S$
- Cliques and clique potentials:
 - Singletons: data label consistency
 - Intra-layer connections: smooth label maps V_{C2}
 - Inter-layer interactions: label fusion V_{C_3}

Singleton terms

• Assuming conditional independent observations, let be:

$$\mathsf{P}(\mathcal{F}|\Omega) = \prod_{s \in S} \mathsf{P}(\overline{g}(s)|\omega(s^g)) \cdot \mathsf{P}(c(s)|\omega(s^c)) \cdot \mathsf{P}(\overline{\nu}(s)|\omega(s^{\nu}))$$

where we use previously defined densities for the S^g and S^c layers:

$$egin{aligned} & Pig(\overline{g}(s)|\omega(s^g) = \mathrm{bg}ig) = \sum_{i=1}^K \kappa_i \cdot \etaig(\overline{g}(s), \overline{\mu}_i, \Sigma_iig) \ & Pig(\overline{g}(s)|\omega(s^g) = \mathrm{ch}ig) = 1/[(b_1 - a_1) \cdot (b_2 - a_2)] \ & Pig(c(s)|\omega(s^c) = \psiig) = \etaig(c(s), artheta_\psi, arsigma_\psi^2ig), \ \psi \in \{\mathrm{ch}, \mathrm{bg}\} \end{aligned}$$

Singletons of S^{ν} will be later given.

(日)

Intra-layer Doubleton Potentials

 Doubleton cliques: smoothing priors of the segmentation within each layer.

• The potential of an intra-layer clique $C_2 = \{s^i, r^i\} \in C_2, i \in \{g, c, *, \nu\}$:

$$V_{C_2} = \begin{cases} -\delta^i & \text{if } \omega(s^i) = \omega(r^i) \\ +\delta^i & \text{if } \omega(s^i) \neq \omega(r^i) \end{cases}$$

for a constant $\delta^i > 0$.

Proposed model

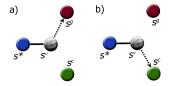
Inter-layer interactions

- Inter-layer cliques: ω(s*) should mostly be equal either to ω(s^g) or to ω(s^c), depending on the 'vote' of the ν(s) feature.
- Edge between s* and s^ν
 Address node s^ν should point either to s^g or to s^c:

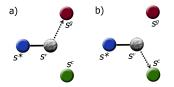
 $\forall s \in S: \ \omega(s^{\nu}) \in \{s^{g}, s^{c}\}$

 The directions of the address pointers are influenced by the singletons of S^ν:

$$m{P}ig(\overline{
u}(m{s})|\omega(m{s}^
u)=m{s}^\chiig)=m{P}ig(\overline{
u}(m{s})|m{h}_\chiig), \ \ \chi\in\{m{g},m{c}\}$$



Inter-layer interactions



• The potential function of the inter-layer clique $C_3 = \{s^*, s^{\nu}\}$:

$$V_{C_3}(\omega(\mathbf{s}^*), \tilde{\omega}(\mathbf{s}^{\nu})) = \begin{cases} -\rho & \text{if } \omega(\mathbf{s}^*) = \tilde{\omega}(\mathbf{s}^{\nu}) \\ +\rho & \text{otherwise} \end{cases}$$

where $\rho > 0$, and $\tilde{\omega}(s^{\nu}) = \omega(\omega(s^{\nu}))$.

Benedek and Szirányi (SZTAKI, INRIA)

16 December 2008 28 / 37

モトイモト

Proposed model

Labeling optimization

MAP estimation of the optimal global labeling <u>
 ŵ</u>:

$$\begin{split} \widehat{\underline{\omega}} &= \arg\min_{\underline{\omega}\in\Omega} \left\{ \sum_{s\in\mathcal{S}} -\log P(\overline{g}(s)|\omega(s^g)) + \right. \\ &+ \sum_{s\in\mathcal{S}} -\log P(c(s)|\omega(s^c)) + \sum_{s\in\mathcal{S}} -\log P(\overline{\nu}(s)|\omega(s^{\nu})) + \\ &+ \sum_{i;\{s,r\}\in\mathcal{C}_2} V_{C_2}(\omega(s^i),\omega(r^i)) + \sum_{s\in\mathcal{S}} V_{C_3}(\omega(s^*),\tilde{\omega}(s^{\nu})) \right\} \end{split}$$

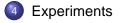
- Optimization by simulated annealing (Modified Metropolis algorithm)
- Output: labeling of the S* layer.

(日)

Content

Introduction

- Feature extraction and integration
 - Global intensity statistics
 - Local block correlation
 - Feature integration
- 3 A Mixed Markovian image segmentation model
 - Introduction to mixed Markov models
 - Proposed model



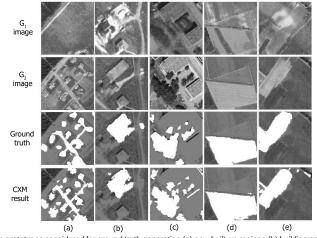
12 N A 12

Test datasets and reference methods

- Database: three sets of optical aerial image pairs provided by the Hungarian Institute of Geodesy Cartography & Remote Sensing (FÖMI) and Google Earth.
 - Data set SZADA: images by FÖMI from 2000 resp. 2005. Seven also manually evaluated - photo pairs, covering in aggregate 9.5km² area at 1.5m/pixel resolution.
 - Data set TISZADOB: *five* photo pairs from 2000 resp. 2007 (6.8km²) with similar size and quality parameters to SZADA.
 - Test pair ARCHIVE, an aerial image taken by FÖMI in 1984 and a corresponding Google Earth photo from around 2007.
- Manually generated ground truth masks
- Metrics: number of false and missed alarms
- 4 reference methods: PCA, Hopfield, MLP, Parzen

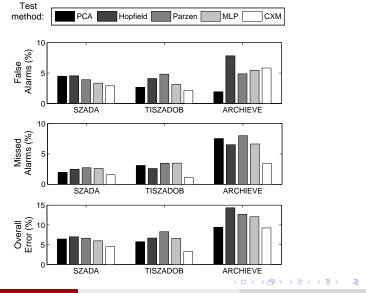
ヘロット 小田 マイロット

Ground truth generation



Change prototypes considered for ground truth generation (a) new built-up regions (b) building operations (c) planting of trees (d) fresh plough-land (e) groundwork before building over

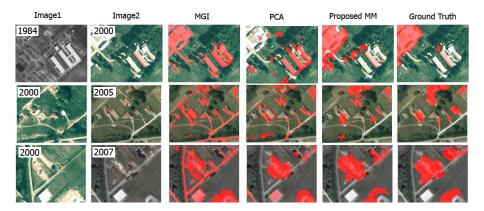
Quantitative comparison



Benedek and Szirányi (SZTAKI, INRIA)

Change Detection in Aerial Photos

Qualitative comparison



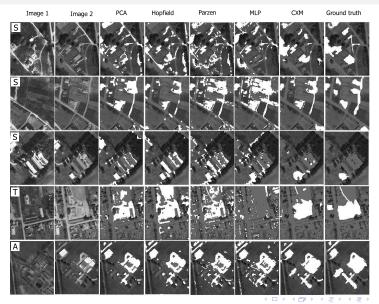
Benedek and Szirányi (SZTAKI, INRIA)

Change Detection in Aerial Photos

16 December 2008 34 / 37

ヘロト 人間 とくほとくほど

Qualitative comparison



Benedek and Szirányi (SZTAKI, INRIA)

Change Detection in Aerial Photos

16 December 2008 35 / 37

References

- Cs. Benedek and T. Szirányi: "Change Detection in Optical Aerial Images by a Multi-Layer Conditional Mixed Markov Model", submitted to IEEE Transacions of Geosciences and Remote Sensing, 2008, before 2nd review round
- Cs. Benedek and T. Szirányi: "A Mixed Markov Model for Change Detection in Aerial Photos with Large Time Differences", *International Conference on Pattern Recognition (ICPR)*, Tampa, Florida, USA, December 8-11, 2008

- A TE N - A TE N

Acknowledgement and contacts

- The authors would like to thank
 - Josiane Zerubia from INRIA for her kind advices regarding the proposed model
 - the MUSCLE Shape Modeling E-Team for financial support of this work
 - Prof. Anuj Srivastava for inviting me to the Florida State University
 - the Associated team Shapes (INRIA, FSU) for supporting my visit to FSU
- Contact me: Csaba Benedek
 - Url: http://web.eee.sztaki.hu/~bcsaba/
 - E-mail: cbenedek@sophia.inria.fr,bcsaba@sztaki.hu

A D N A B N A B N A B N