C++14 Language Features

In [1]:
#include <iostream>
#include <vector>
#include <cmath>
#include <array>
#include <memory>
#include <chrono>
#include <string>

Binary literals
Binary literals provide a convenient way to represent a base-2 number. It is possible to separate digits with '.

In [ ]:
0b110; // == 6
0b1111'1111; // == 255

Generic lambda expressions
C++14 now allows the auto type-specifier in the parameter list, enabling polymorphic lambdas.

In [ ]:
auto identity = [](auto x) { return x; };
int three = identity(3); // == 3
std::string foo = identity("foo"); // == "foo"

Lambda capture initializers
This allows creating lambda captures initialized with arbitrary expressions. The name given to the captured value does not need to be related to any variables in the enclosing scopes and introduces a new name inside the lambda body. The initializing expression is evaluated when the lambda is created (not when it is invoked).

In [ ]:
//Lambda capture initializers//
int factory(int i) { 
    return i * 10; 
}

auto f = [x = factory(2)] { return x; }; // returns 20
    
auto generator = [x = 0] () mutable {
    // this would not compile without 'mutable' as we are modifying x on each call
    return x++;
};

auto a = generator(); // == 0
auto b = generator(); // == 1
auto c = generator(); // == 2

// Because it is now possible to move (or forward) values into a lambda that could previously be only 
// captured by copy or reference we can now capture move-only types in a lambda by value. Note that in the 
// below example the p in the capture-list of task2 on the left-hand-side of = is a new variable private to the 
// lambda body and does not refer to the original p.

auto p = std::make_unique<int>(1);
    
//auto task1 = [=] { *p = 5; }; // ERROR: std::unique_ptr cannot be copied
// vs.
auto task2 = [p = std::move(p)] { *p = 5; }; // OK: p is move-constructed into the closure object
// the original p is empty after task2 is created

//Using this reference-captures can have different names than the referenced variable.
    
auto x = 1;
auto f2 = [&r = x, x = x * 10] {
    ++r;
    return r + x;
};

f2(); // sets x to 2 and returns 12

Return type deduction
Using an auto return type in C++14, the compiler will attempt to deduce the type for you. With lambdas, you can now deduce its return type using auto, which makes returning a deduced reference or rvalue reference possible.

In [ ]:
//Return type deduction//
template <typename T>
auto& f3(T& t) {
    return t;
}

// Returns a reference to a deduced type.
auto g = [](auto& x) -> auto& { return f3(x); };
int y = 123;
int& z = g(y); // reference to `y`

decltype(auto)
The decltype(auto) type-specifier also deduces a type like auto does. However, it deduces return types while keeping their references or "const-ness", while auto will not.

In [ ]:
//decltype(auto)//
// Return type is `int`.
auto ff(const int& i) {
    return i;
}
   
// Return type is `const int&`.
decltype(auto) gg(const int& i) {
    return i;
}

const int x1 = 0;
auto x2 = x1; // int
decltype(auto) x3 = x1; // const int
int y1 = 0;
int& y2 = y1;
auto y3 = y2; // int
decltype(auto) y4 = y2; // int&
int&& z1 = 0;
auto z2 = std::move(z1); // int
decltype(auto) z3 = std::move(z1); // int&&

// Note: Especially useful for generic code!
int xx = 123;
static_assert(std::is_same<const int&, decltype(ff(xx))>::value == 0);
static_assert(std::is_same<int, decltype(ff(xx))>::value == 1);
static_assert(std::is_same<const int&, decltype(gg(xx))>::value == 1);

Relaxing constraints on constexpr functions
In C++11, constexpr function bodies could only contain a very limited set of syntaxes, including (but not limited to): typedefs, usings, and a single return statement. In C++14, the set of allowable syntaxes expands greatly to include the most common syntax such as if statements, multiple returns, loops, etc.

In [ ]:
//Relaxing constraints on constexpr functions//
constexpr int factorial(int n) {
    if (n <= 1) {
        return 1;
    } else {
        return n * factorial(n - 1);
    }
}

factorial(5); // == 120 computed in compile time

C++14 Library Features

User-defined literals for standard library types
New user-defined literals for standard library types, including new built-in literals for chrono and basic_string. These can be constexpr meaning they can be used at compile-time. Some uses for these literals include compile-time integer parsing, binary literals, and imaginary number literals.

In [ ]:
using namespace std::chrono_literals;
auto day = 24h;
day.count(); // == 24
std::chrono::duration_cast<std::chrono::minutes>(day).count(); // == 1440

std::make_unique
std::make_unique is the recommended way to create instances of std::unique_ptrs due to the following reasons:

    Avoid having to use the new operator.
    Prevents code repetition when specifying the underlying type the pointer shall hold.
    Most importantly, it provides exception-safety. Suppose we were calling a function foo like so:
In [ ]:
foo(std::unique_ptr<T>{ new T{} }, function_that_throws(), std::unique_ptr<T>{ new T{} });

The compiler is free to call new T{}, then function_that_throws(), and so on... Since we have allocated data on the heap in the first construction of a T, we have introduced a leak here. With std::make_unique, we are given exception-safety:

In [ ]:
foo(std::make_unique<T>(), function_that_throws(), std::make_unique<T>());

Variable Templates
C++14 allows variables to be templated:

In [ ]:
template<class T>
constexpr T pi = T(3.1415926535897932385);
template<class T>
constexpr T e  = T(2.7182818284590452353);

Compile-time integer sequences
The class template std::integer_sequence represents a compile-time sequence of integers. There are a few helpers built on top:

std::make_integer_sequence<T, N...> - creates a sequence of 0, ..., N - 1 with type T.
std::index_sequence_for<T...> - converts a template parameter pack into an integer sequence.

Convert an array into a tuple:

In [ ]:
template<typename Array, std::size_t... I>
decltype(auto) a2t_impl(const Array& a, std::integer_sequence<std::size_t, I...>) {
    return std::make_tuple(a[I]...);
}

template<typename T, std::size_t N, typename Indices = std::make_index_sequence<N>>
decltype(auto) a2t(const std::array<T, N>& a) {
    return a2t_impl(a, Indices());
}