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Abstract. Detection of vehicles in crowded 3-D urban scenes is a chal-
lenging problem in many computer vision related research fields, such as
robot perception, autonomous driving, self-localization, and mapping.
In this paper we present a model-based approach to solve the recogni-
tion problem from 3-D range data. In particular, we aim to detect and
recognize vehicles from continuously streamed LIDAR point cloud se-
quences of a rotating multi-beam laser scanner. The end-to-end pipeline
of our framework working on the raw streams of 3-D urban laser data
consists of three steps 1) producing distinct groups of points which repre-
sent different urban objects 2) extracting reliable 3-D shape descriptors
specifically designed for vehicles, considering the need for fast processing
speed 3) executing binary classification on the extracted descriptors in
order to perform vehicle detection. The extraction of our efficient shape
descriptors provides a significant speedup with and increased detection
accuracy compared to a PCA based 3-D bounding box fitting method
used as baseline.

1 Introduction

1.1 Problem Statement

Efficient and fast perception of the surrounding environment has a major im-
pact in mobile robotics research with many prominent application areas, such as
autonomous driving, driving assistance systems, self localization and mapping,
and obstacle avoidance [1, 2]. Future mobile vision systems promise a number
of benefits for the society, including prevention of road accidents by constantly
monitoring the surrounding vehicles or ensuring more comfort and convenience
for the drivers. Outdoor laser scanners, such as LIDAR mapping systems par-
ticularly have become an important tools for gathering data flow for these tasks
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since they are able to rapidly acquire large-scale 3-D point cloud data for real-
time vision, with jointly providing accurate 3-D geometrical information of the
scene, and additional features about the reflection properties and compactness
of the surfaces. Moreover, LIDAR sensors have a number of benefits in con-
trast to conventional camera systems, e.g. they are highly robust against daily
illumination changes, and they may provide a larger field of view. Robust de-
tection and recognition of vehicles in 3-D urban scenarios is one of the major
challenges in any robot perception related task. In this paper we focus on the
vehicle detection problem relying on large-scale terrestrial point clouds recorded
in different crowded urban scenarios, such as main roads, narrows streets and
wide intersections. More specifically we use as input a raw point cloud stream
of a rotating multi-beam (RMB) laser acquisition system. The problem of de-
tection and recognition of certain types of object characteristics on streaming
point clouds is challenging for various reasons. First, the raw measurements
are noisy and contain several different objects in cluttered regions. Second, in
crowded scenes the vehicles, pedestrians, trees and street furnitures often occlude
each other causing missing or broken object parts in the visible measurement
streams. Third, typically by terrestrial laser scanning the point cloud density
rapidly decreases as a function of the distance from the sensor [3], which fact
may cause strongly corrupted geometric properties of the object appearances,
misleading the recognition modules. Further requirements arise for navigation
or autonomous driving systems, where the data is continuously streamed from
a laser sensor mounted onto a moving platform, and we are forced to complete
the object detection and recognition tasks within a very limited time frame.

1.2 Related Works

Significant research efforts are expended nowadays for solving object recognition
problems in point clouds obtained by 3-D laser scanners. Extracting efficient
object descriptors (i.e. features) is an essential part in each existing technique,
which step usually implements one of the two following strategies.

According to the first strategy, the shape and the size of the objects are
approximated by 3-D bounding boxes. In [4] a framework has been proposed for
object classification and tracking. The basic idea is to use an octree based Oc-
cupancy Grid representation to model the surrounding environment, and simple
features for object classification, such as the length ratios of object bounding
boxes. In that method three different object classes are considered: pedestrians,
bicycles and vehicles. In our case, however, the observed environment consists
of complex urban scenarios with many object types such as trees, poles, traffic
signs, and occluded wall regions. Here simple features may not be robust enough
for efficient object classification, due to the largely diverse appearances of the
considered object shapes throughout an entire city. Other approaches derive
3-D bounding boxes for recognition via Principal Component Analysis (PCA)
techniques. The authors of [5] and [6] calculate statistical point cloud descrip-
tors: they compute saliency features which capture the spatial distribution of
points in a local neighborhood by covariance analysis. The main orientation of
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an object is derived from the principal components (eigenvalues and correspond-
ing eigenvectors), considering the covariance matrix of the 3-D point positions.
Object classification is achieved by three saliency features, namely scatterness,
linearness and surfaceness, which are calculated as linear combinations of the
eigenvalues.

Following the second strategy, a group of existing object classification tech-
niques use different features, based on shape and contextual descriptors [7], [8],
[9]. [7] propose a system for object recognition, by clustering nearby points from
a set of potential object locations. Thereafter, they assign the points near the
estimated object locations to foreground and background sets using a graph-cut
algorithm. Finally a feature vector is built for each point cluster, and the feature
vectors are labeled by a classifier, trained on a manually collected object set. In
[8] an algorithm is presented for fast segmentation of point cloud regions, followed
by a 3-D segment classification step which is based on various 3-D features, like
the spin image or the spherical harmonic descriptor. [9] introduce an approach
for detecting and classifying different urban objects from a raw stream of 3-D
laser data such as cars, pedestrians and bicyclists. For this purpose a graph-
based clustering algorithm, different shape descriptors and shape functions are
exploited, such as the spin image and PCA based eigenvectors. Although these
general shape and context based methods may provide more precise recognition
rates for urban objects than the 3-D bounding box based techniques, they are
computationally more expensive, and often do not perform in real time.

Fig. 1. Demonstrating the limitations of PCA based bounding box approximation, and
the advantages of the proposed convex hull based bounding box fitting technique on
the top-view projection of a selected vehicle in the point cloud

2 Contributions of the Proposed Approach

In this work we present a real-time model-based system for vehicle detection and
extraction from continuously streamed LIDAR point clouds, which are captured
in challenging urban scenarios. By constructing the proposed vehicle model, we
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combine three novel feature extraction steps. First we propose a new convex
hull based 2-D bounding box fitting method, which is used for fast and pre-
cise estimation of the location, size and orientation parameters of the vehicle
candidates. Second, we develop a 3-D sphere based feature, which is used for
approximating the principal curvatures of the objects in 3-D. Third, we extract
the object contours from the side-view, in order to obtain a representative shape
characteristics of vehicles in 2-D. Our model gives two major contributions over
existing approaches:

⋄ Fast 2-D bounding box fitting for cluttered and partially incomplete objects:

It is highly challenging to fit precise bounding boxes around the objects in
RMB LIDAR range data streams, since we should expect various artifacts
of self-occlusion, occlusion by other object, measurement noise, inhomoge-
neous point density and mirroring effects. These factors drastically change
the appearances of the 3-D objects, and the conventional principal compo-
nent analysis (PCA) based techniques [4, 5] may not give sufficient results.
Especially, in the RMB point cloud streams, only the object side facing
the sensor is clearly visible, and the opposite side of the object is usually
completely or partially missing. For this reason, if we calculate by PCA co-
variance analysis the principal directions of a point cloud segment identified
as a vehicle candidate, the eigenvectors usually do not point towards the
main axes of the object, yielding inaccurately oriented bounding boxes, as
demonstrated in Fig. 1. In contrast to PCA solutions in 3-D, we calculate
the 2-D convex hull of the top-view projection of the objects, and we de-
rive the 2-D bounding boxes directly from the convex hull. As shown later,
this strategy is less sensitive to the inhomogeneous point density and the
presence of missing/occluded object segments, since instead of calculating
spatial point distributions for the entire object’s point set, we capture here
the local shape characteristics of the visible object parts, and fit appropriate
2-D bounding boxes with partial matching.

⋄ Lightweight shape analysis for streaming data: For enhancing the classifi-
cation performance of object recognition, an efficient shape descriptor, called
the spin image, has been adopted in several previous methods [7–9]. Spin im-
age based features can be used to approximate the object shapes by surface
meshes, yielding robust solutions for object classification and recognition.
However, the demand of real-time performance is not feasible here, since
estimating different surface models for 3-D data is a computationally ex-
pensive task. Therefore, these mesh based models are not directly designed
for continuously streamed range data. In our solution, we propose two new
features for approximating the principal curvatures of the objects in 3-D.
The extracted contour of the detected object’s side-view profile can be com-
pared to a reference vehicle contour model, which is obtained by supervised
training. To train our classifier, we use vehicle samples from a manually
annotated point cloud database. Our proposed features are also able to suf-
ficiently model the shape characteristics of vehicle objects, while they can
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be calculated very quickly, offering a decent trade-off with respect to speed
and accuracy.

The description of the proposed model-based recognition framework is struc-
tured as follows. In Section 3 we briefly present the preprocessing steps. First,
a hierarchical grid based data structure is introduced, which will allow us to
perform fast retrieval of 3-D point cloud features for segmentation and detection
purposes. Second, we propose a point cloud segmentation algorithm, to distin-
guish the foreground regions of the captured scene containing the moving or
static field objects, from the background composed of the roads and other ter-
rain parts. Third, a fast connected component analysis algorithm is presented
for separating individual objects within the foreground regions. The main new
contributions of this paper are related to vehicle detection and localization. In
Section 4, we introduce our vehicle model with defining an efficient set of fea-
tures, which characterize vehicle candidates in the point clouds. In Section 5, a
Support Vector Machine (SVM) based object classification process is described
based on the previous features. Finally we report on the experiments and present
the evaluation results in Section 6.

3 Point Cloud Segmentation and Object Separation

In this section, we introduce the point cloud preprocessing module of the pro-
posed system to prepare the data for the vehicle detection step. An efficient
grid based method was presented [10, 11], which will be adopted here for robust
foreground extraction and 3-D object separation, in challenging dense urban en-
vironments where several nearby object may be located close to each other.

⋄ The Hierarchical Grid Model data structure:

We fit a regular 2-D grid S with WS rectangle side length onto the Pz=0

plane (using the RMB sensor’s vertical axis as the z direction and the sensor
height as a reference coordinate), where s ∈ S denotes a single cell. We assign
each p ∈ P point of the point cloud to the corresponding cell sp, which contains
the projection of p to Pz=0. Let us denote by Ps = {p ∈ P : s = sp} the point set
projected to cell s. Moreover, we store the height coordinate and different height
properties such as, maximum zmax(s), minimum zmin(s) and average ẑ(s) of the
elevation values within cell s, which quantities will be used later for foreground
separation.

For robust object detection a denser grid resolution is also required in this
grid data structure, therefore the cell s of the coarse grid level is subdivided into
smaller cells s′d|d ∈ {1, 2, . . . , ξ2}, with cell side lengthWs′

d
=Ws/ξ, where ξ is a

scaling factor (used ξ = 3). We store references for each 3-D point in the coarse
and dense grid levels as well.

⋄ Foreground separation and object detection:
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Fig. 2. Visualization of our hierarchical grid model data structure - (bottom) the coarse
grid level: the 3-D space coarsely quantized into 2-D grid cells, (top) the dense grid
level: each grid cell on the coarse level subdivided into smaller cells.

The foreground separation is achieved on the coarse grid level of the above
presented grid data structure. Our goal is to discriminate foreground regions
e.g. street furnitures, pedestrians, vehicles, walls and other street objects, and
background regions composed of the roads, sidewalks and grassy ground. For
ground segmentation we apply a locally adaptive terrain modeling approach
similarly to [10], which is able to accurately extract the road regions, even if their
surfaces are not perfectly planar. We use point height information for assigning
each grid cell to an appropriate cell class. Before that, we detect and remove grid
cells that belong to irrelevant clutter regions, thus we will not visit these cells
later and save processing time. We classify each cell to clutter, which contains less
points than a predefined threshold (typically 4-8 points). After clutter removal
all the points in a cell are classified as ground, if the difference of the minimal
and maximal point elevations in the cell is smaller than a threshold (used 25cm),
moreover the average of the elevations in neighboring cells does not exceeds an
allowed height range based on a globally estimated digital terrain map. The
first criterion ensures the flatness or homogeneity of the points. Given a cell
with 60 centimeters of width, this allows 22.6◦ of elevation within a cell; higher
elevations are rarely expected in an urban scene. The rest of the points in the
cloud are assigned to class foreground belonging to vehicles, pedestrians, mail
boxes, billboards etc.

After the foreground separation step, our aim is to find distinct groups of
points which belong to different urban objects on the foreground. For this task
we use the hierarchical grid model : On one hand, the coarse grid resolution
is appropriate for a rough estimation of the 3-D blobs in the scene, in this
way we can also roughly estimate the size and the location of possible object
candidates. On the other hand, using a dense grid resolution beside a coarse grid
level, is efficient for calculate point cloud features from a smaller subvolume of
space, therefore we can refine the detection result derived from the coarse grid
resolution.

The proposed object detection algorithm consists of three main steps: First,
we visit every cell of the coarse grid and for each cell s we consider the cells



A Model-based Approach for Fast Vehicle Detection in LIDAR Point Clouds 7

Fig. 3. The step by step demonstration of the object detection algorithm

in its 3 × 3 neighborhood (see Fig. 3a),3b)). We visit the neighbor cells one
after the other in order to calculate two different point cloud features: (i) the
maximal elevation value Zmax(s) within a coarse grid cell and (ii) the point cloud
density (i.e. point cardinality) of a dense grid cell. Second our intention is to
find connected 3-D blobs within the foreground regions, by merging the coarse
level grid cells together. We use and elevation-based cell merging criterion for
perform this step. ψ(s, sr) = |Zmax(s)−Zmax(sr)| is a merging indicator, which
measures the difference between the maximal point elevation within cell s and
its neighboring cell sr. If the ψ indicator is smaller than a predefined value, we
assume that s and sr belong to the same 3-D object (see Fig. 3c)). Third, we
perform a detection refinement step on the dense grid level. The elevation based
cell merging criterion on the coarse grid level often yields that nearby and self-
occluded objects are merged into a same blob. We handle this issue by measuring
the point density in each sub-cell s′d at the dense grid level. Our assumption is
here that the nearby objects, which were erroneously merged at the coarse level,
could be appropriately separated at the fine level, as the examples in Fig. 4
show. Let us present three typical urban scenarios when the simple coarse grid
model merges the close objects to the same extracted component, while using
a hierarchical grid model with coarse and dense grid level, the objects can be
appropriately separated. We consider two neighboring super-cell pairs -marked
by red - in Fig. 4a) and Fig. 4b), respectively. In both cases the cells contain
points from different objects, which fact cannot be justified at the coarse cell
level. However, at the dense level, we can identify connected regions of near-
empty sub-cells (denoted by gray), which separate the two objects. Fig. 4c)
demonstrates a third configuration, when a super-cell intersects with two objects,
but at the sub-cell level, we can even find a separator line.
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Fig. 4. Separation of close objects at the dense grid level. [color codes: green lines
=coarse grid level, black lines=dense grid level, grey cells= examined regions for object
separation]

4 Vehicle Model and Feature Extraction

The output of the workflow introduced in Section 3 is a list of point cloud
segments (called hereafter blobs) representing the object candidates of the scene.
Our next goal is to identify the vehicles among the extracted blobs.

In this section we present our features used for point cloud based vehicle

modeling, and the feature integration process. The proposed module consists of
the combination of three descriptors in order the find the optimal trade-off w.r.t.
speed and accuracy. First, we approximate the position, size, and orientation
parameters of the obtained objects by fitting a 2-D bounding box to the point
cloud blobs. In contrast to previous works [4–6] we do not calculate spatial point
distributions over the entire blobs, due to reasons detailed in Sec. 2. Instead, we
determine the vehicle’s 2-D convex hull with a matching step considering only
the visible structure elements. In this way our solution is independent of the local
point cloud density at the given object position, and performs efficiently even if
a significant part of the object is occluded. On the other hand, we have observed
that the special curvature of the vehicle shape, especially around the windshields,
is a characteristic feature for visual recognition, which can be quickly estimated
and efficiently used for identification. The detailed explanation of the proposed
feature extraction strategy is presented as follows:

⋄ 2-D bounding box fitting via convex hulls: Let us consider the output of the
preprocessing module (Section 3) on the dense grid level of the Hierarchical

Grid Model. At this step, we only use the width and a depth (X,Y) coordi-
nates of the points, and the height coordinates (Z) are ignored. We mark first

which cells are occupied by several points, and which ones are empty. Next
we visit the 3×3 neighborhood of each occupied cell, and filter out the cells,
where all neighbors are occupied as well. In this way we can roughly estimate
the boundary cells of the object. Then, we construct the convex hull from
the points of the boundary cells using the monotone chain algorithm [12]. In
the forthcoming key step, we attempt to fit the optimal 2-D bounding box
to the convex hull as follows (see also a demonstration in Fig. 5):
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• Visit the consecutive point pairs of the hull pi and pi+1, one after another
(i = 1, 2, . . . , imax):
1. Consider the line li between point pi and pi+1, as a side candidate

of the bounding box rectangle.
2. Find the p⋆ point of the hull, whose distance is maximal from li, and

draw a l⋆ parallel line with li which intersects p⋆. We consider l⋆ as
the second side candidate of the bounding box.

3. Project all the points of the convex hull to the line li, and find the
two extreme ones p′ and p′′. The remaining two sides of the bounding
box candidate will be constructed by taking perpendicular lines to
li, which intersect p′ and p′′ respectively.

• Chose the optimal bounding box from the above generated rectangle set
by minimizing the average distance between the points of the convex hull
and the fitted rectangle.

Fig. 5. Demonstration of the fast 2-D bounding box fitting algorithm for the convex
hull of the top-view object projection (the bounding box is shown marked by gray color

⋄ Principal curvature estimation with 3-D spheres: Our aim here is to place
four spheres near to the four top corners of the vehicle’s roof, in order to
examine the typical curvatures around this regions, especially close to the
windshields. First we vertically shift the 2-D bounding box obtained by the
previous feature extraction step to the maximal elevation within the vehicle’s
point set. This configuration is demonstrated in Fig. 6 both from top-view
and from side-view. Then we set the center points of the spheres to the cor-
ner points of the shifted 2-D bounding rectangle. We start to increase the
radius of the spheres as long as they hit a 3-D point from the vehicle. Our as-
sumption is that due to the typical slope around the windshields, we should
experience significant differences between the radiuses of the four spheres.
We can also observe in Fig. 6 that the radiuses of the frontal spheres (R1 and
R2) are significantly larger than the radiuses of the spheres at the back side
(R3 and R4). We use in the following the four radius values in the object’s
feature vector.

⋄ Shape approximation of side-view profile using convex and concave hulls: at
this step, we project the point clouds of the object candidates to a verti-
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Fig. 6. Demonstration of the principal curvature feature with 3-D spheres

cal plane which is parallel to the main axis of the top-view bounding box.
Thereafter, we fit to the 2-D side-view object silhouettes a convex hull, and
a concave hull with 20cm resolution. Here the shape features are the con-
tour vectors of the convex and concave hulls themselves, so that we store
the contours of sample vehicles with various prototypes in a library, and we
compare the contours of the detected objects to the library objects via the
turning function based polygon representation [13].

Fig. 7. Demonstration of side-view convex and concave hulls

5 Classification

In the final stage of the detection process, we must label each object candidate as
vehicle or background (i.e. non-vehicle), based on a feature vector composed of
the descriptors from Section 4. We used the following three feature components:
1) The length and the width of the approximated 2-D bounding box derived
from the convex hull. 2) The four radius values of the 3-D spheres, as well as the
radius difference between the frontal and the back sphere pairs, which are pro-
posed for principal curvature estimation. 3) The difference between the concave
side profile hull of the vehicle candidate and the prototype shape, which is a real
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number normalized between zero and one. Consequently, the resulting feature
vector consists of eight dimensions. Following a supervised approach, we created
first a training set of positive and negative vehicle samples. For this purpose,
we have developed a 3-D annotation tool, which enables labeling the urban ob-
jects in the point clouds as vehicles or background. We have manually collected
more than 1600 positive samples (i.e. vehicles), and also generated 4000 negative
samples from different scenarios recorded in the streets of Budapest, Hungary.
The negative samples were created by a semi-automatic process, cutting random
regions from the point clouds, which were manually verified. In addition, 12715
positive vehicle samples, and 3396 negative samples (different street furniture
and other urban objects) have been selected from the KITTI Vision Benchmark
Suite [14] and used for the training of the classifier. We have performed a binary
classification between the vehicles and the background objects by a Support Vec-
tor Machine (SVM) using the toolkit from [15]. Here we used C = 0.1078 as the
kernel function parameter, and ν = 0.0377 as the upper bound on the fraction
of margin errors.

6 Experiments

Point Cloud Dataset NO

PCA based approach [5] Prop. Model-based approach

F-rate(%)
Avg. Processing
Speed (fps)

F-rate(%)
Avg. Processing
Speed (fps)

Budapest Dataset #1 567 73 15 89 24

Budapest Dataset #2 1141 71 12 90 21

Budapest Dataset #3 368 57 13 80 22

KITTI Dataset [14] 614 62 14 78 25

Overall 2690 68 13.5 86 23
Table 1. Numerical comparison of the detection results obtained by the Principal
Component Analysis based technique [5] and the proposed Model-based framework.
The number of objects (NO) are listed for each data set, and also in aggregate.

We evaluated our method on four LIDAR point cloud sequences, concerning
different types of urban scenarios, such as main roads, narrow streets and inter-
sections. Three scenarios have been recorded in the streets of Budapest, Hungary,
and the fourth scenario has been selected from the KITTI Vision Benchmark
Suite [14]. All the test sequences have been recorded by a Velodyne HDL-64E
S2 rotating multi-beam LIDAR sensor, with a 10Hz rotation speed. We have
compared our Model-based approach to a reference method, which uses a simple
occupancy grid representation for foreground separation, and applies Principal
Component Analysis (PCA) based features for object classification [5].
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Qualitative results of our proposed model on four sample frames are shown
in Fig. 8.1 During the quantitative evaluation, we verified the proposed method
and the reference PCA based technique on 2690 vehicles, using the Ground
Truth (GT) information. To enable fully automated evaluation, we needed to
make first a non-ambiguous assignment between the detected objects and GT
object samples, where we used the Hungarian algorithm [16] to find optimal
matching. Thereafter, we counted the number of Missing Objects (MO), and the
Falsely detected Objects (FO). These values were compared to the Number of
real Objects (NO), and the F-rate of the detection (harmonic mean of precision
and recall) was also calculated. We have also measured the processing speed
of the two methods in frames per seconds (fps). The numerical performance
analysis is given in Table 1. The processing speed of the individual modules of
the framework on the entire test dataset, which consist of 2690 vehicles is the
following: 1) Building hierarchical grid data structure - 13ms 2) Point cloud
segmentation - 4ms 3) Object separation step - 6ms 4) Feature extraction step
- 18ms 5) SVM decision 2ms. The results confirm that the proposed model
surpasses the PCA based method in F-rate for all the scenes. Moreover, the
proposed Model-based approach is significantly faster on the streaming data, and
in particularly, it gives more reliable results in the challenging crowded urban
scenarios (#2 and #3), where several vehicles are occluded by each other, and
the scene contains various types of other objects and street furnitures such as
walls, traffic signs, billboards, pedestrians etc. The proposed method only fails
on highly occluded vehicles, where the objects are broken into many parts or the
majority of the vehicle’s point cloud is missing. As for the computational speed,
we measured 13.5 fps in average with the Principal Component Analysis based
technique [5] and 23 fps with the proposed Model-based approach.

7 Conclusion

In this work we have proposed a novel Model-based framework, which uses three
new descriptors for robust detection of vehicles in continuously streamed point
cloud sequences of a rotating multi-beam LIDAR sensor. Due to the presented
features we have observed a reliable performance in challenging dense urban
scenarios with multiple occlusions and the presence of various types of scene ob-
jects. The model has been quantitatively validated based on Ground Truth data,
and the advantages of the proposed solution versus a state-of-the-art technique
have been demonstrated.
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