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ABSTRACT

In this paper we propose an end-to-end, automatic, online

camera-LIDAR calibration approach, for application in self

driving vehicle navigation. The main idea is to connect the

image domain and the 3D space by generating point clouds

from camera data while driving, using a structure from mo-

tion (SfM) pipeline, and use it as the basis for registration. As

a core step of the algorithm we introduce an object level align-

ment to transform the generated and captured point clouds

into a common coordinate system. Finally, we calculate the

correspondences between the 2D image domain and the 3D

LIDAR point clouds, to produce the registration. We evalu-

ated the method in various different real life traffic scenarios.

Index Terms— LIDAR, camera, calibration

1. INTRODUCTION

Autonomous driving systems [1], equipped with 3D LIDAR

sensors and electro-optical cameras can achieve accurate and

comprehensive environment perception. Accurate LIDAR

and camera calibration is essential for robust data fusion,

issues that are extensively studied in the literature. Existing

calibration techniques can be grouped based on various as-

pects: the necessity of user interaction, specific environmen-

tal conditions, operational requirements, semi- [2] or fully

automatic [3], target-based [2, 4, 5, 6] or targetless [3, 7],

offline [2] or online [7]. In self driving applications, however,

even a well calibrated system needs some re-calibration due

to vibration on the roads and some sensor artifacts, calling

for robust online registration techniques, which are able to

precisely calibrate LIDAR and camera sensors on the fly.

In this paper we propose a novel targetless fully automatic

extrinsic calibration method between a camera and a Rotating

Multi-Beam (RMB) LIDAR mounted on a moving car. We

only have to fix the sensors on the vehicle and start driving

in a typical urban environment, and the method will calculate
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Fig. 1. Workflow of the proposed approach.

all necessary registration parameters in situ, online. State-

of-the-art competing approaches extract features for corre-

spondence calculation from the observed natural environment

without calibration objects. [3] transforms the range sensor’s

3D measurement into a so called Bearing Angle (BA) image,

and identifies point correspondences between the BA and the

camera image. Alternatively, mutual Information was used in

[8] to calibrate different range sensors with cameras. How-

ever, experiments show that the above techniques require a

critical point density of the point cloud for reliable opera-

tion, which is not ensured at the single RMB LIDAR frames

provided by a car during self-driving operation [8]. The cor-

respondences in [7] are detected based on automatically ex-

tracted sets of lines both in the 2D images and in the 3D

point clouds. According to [7] the method is preferably used

indoors, where the required number of line correspondences

can be often observed. However, such conditions cannot be

guaranteed in RMB LIDAR point cloud frames recorded in

outdoor urban environments, which are notably sparse and

their density rapidly decreases as a function of the distance

from the sensor. In summary, finding meaningful feature cor-

respondences between the 3D point cloud and the 2D image

domain is the main challenge in online, targetless calibration,

which we aim to overcome here in a novel way (Fig. 1).

2. THE PROPOSED APPROACH

To avoid feature (2/3D interest points, line and planar seg-

ments) detection we turn to a structure from motion (SfM)

based technique [9] to generate point clouds from the image



Fig. 2. SfM point cloud generation (a) 4 from a set of 8

images to process. (b) Generated sparse point cloud (2041

points). (c) Densified point cloud (257796 points).

sequences recorded by the moving vehicle (Fig. 2-3), and we

perform an alignment between the LIDAR and the generated

point clouds. In this way, our main task can be interpreted as

a point cloud registration problem (Fig. 4). Most of the con-

ventional point level iterative registration techniques, such as

variants of ICP or NDT [10], may fail when the density char-

acteristic is quite different between the point clouds, and in

our case, they can also be misled by false correspondences

on the ground caused by the typical ring patterns of RMB LI-

DAR data. To avoid such artifacts we proposed a robust object

level alignment approach between sparse RMB LIDAR point

clouds and a dense reference pont map in [11, 12]. This tech-

nique extracts object blob centers in both point cloud frames,

which are matched in the Hough domain, based on the idea

of a fingerprint minutiae matching algorithm [13]. Although

that approach is able to find a robust transformation between

two point sets even if the number of points are different, it be-

comes sensitive to several false or inaccurate hits of the object

detector, which are present in our case since both the RMB

LIDAR and the SfM point clouds are quite sparse and noisy.

In particularly, we observed that vehicles in the SfM clouds

often fall into several pieces due to their homogeneous sur-

faces (Fig. 4(c)), causing false matches to the Hough-based

estimator [12]. The next key step is to use semantic infor-

mation for eliminating many of the false object candidates.

While object segment classification in sparse point clouds is

often unreliable due to occlusion, we can robustly detect ve-

hicle instances in the original camera images with deep neural

networks such as Mask R-CNN [14] (Fig. 4(d)). Even in de-

ficient SfM clouds, by projecting the 2D class labels into 3D

the vehicle points can be efficiently identified (Fig. 4(e)) and

removed, helping registration enhancement.

Our final aim is to find correspondences between the

RMB LIDAR points and the pixels of the individual camera

images. Therefore, we calculate three matrices: T1 which

projects the points of the SfM cloud onto the image domain,

T2 which transforms the LIDAR frame to the coordinate sys-

tem of the SfM cloud, and T3 to project the LIDAR point

cloud directly onto the 2D image domain. The steps of the

Fig. 3. (a) Sparse cloud with each point assigned a unique

color. (b) One frame showing color coded 2D points that

contribute to the 3D point with the same color in (a) - also

showing 3 example correspondences.

new algorithm (Fig. 1) are presented in the following subsec-

tions in details.

2.1. Point cloud and transformation calculation

As the first step, we generate a sparse point cloud from a con-

tinuous series of camera images, using a modified OpenMVG

library [9][15], as described in the following.

We select N ≥ 3 consecutive non-static camera frames

(N = 8 constant in this paper, resolution is 1288 × 964
pixels), and feed the images into our structure from motion

pipeline:

1) Rectification: we rectify and store the selected frames.

2) Semantic segmentation of the rectified frames using Mask

R-CNN [14] to obtain pixel level class labels.

3) Extraction and matching (L2 fast cascade matching) using

SIFT feature points for the selected images.

4) Sparse point cloud calculation: Perform structure from

motion to generate a sparse point cloud (Fig. 2(b)), then i).

store the class labels - obtained in step 2 - of the feature points,

and ii). assign unique IDs and store the feature points that

contribute to the point cloud calculation. For each 3D point

we store the 2D image points (IDs and class) from all images

that contributed to the estimation of the 3D point. We also

assign unique IDs to all 3D points and save their associated

image points from the selected frames.

5) Using the stored 3D-2D point associations (Fig. 3(a-b))

we select M points from each frame based on point density

(M = 45 constant), and from these 2D-3D associations we

calculate the transformation T1 using [16].

6) Densification of the sparse point cloud (see Fig. 2(c),

Fig. 4(b)) using OpenMVS [17]. This cloud and the obtained

transformation will be used for alignment and registration.

The above steps can be performed on the fly, either in a

loop by selecting the next N frames in a moving time win-

dow and updating the obtained transformations, or periodi-

cally (e.g. every 10 minutes), since the vehicle’s movements

can cause sensor displacements requiring regular updates.



Fig. 4. Results of main steps in the proposed object based alignment method. In subfigures (h) and (i) RMB LIDAR data is

displayed with green, while the generated SfM point cloud is shown with dark grey.

2.2. Object based point cloud alignment

According to [12] we extract connected components (ob-

jects) after ground removal, i.e., we extract two sets of object

centers O1 and O2 from the SfM-generated and the LIDAR-

captured point clouds. Using an iterative voting process [13]

we estimate an optimal matching T2 between the two ob-

ject sets. In the LIDAR cloud, large objects such as facade

segments and large vehicles may be only partially visible

providing invalid object centers. These large targets may

mislead the transformation estimation, so first we eliminate

them based on geometric constraints, and we only rely on

compact blobs containing mainly street furniture elements

such as poles, traffic sings, trash bins or billboards. Vehicles

from the SfM point cloud are eliminated using the semantic

information by Mask R-CNN as mentioned earlier.

During the transformation estimation we search for an op-

timal a 3D rigid body transformation which can be formulated

as a rotation around the upwards vector with the proper α

value and a 3D translation [dx, dy, dz]among the three coor-

dinate axes.

Our transformation estimation is a discrete and finite

problem, so we divide the transformation space into equal

bins. We address a 4D voting array V [α, dx, dy, dz] by the

α rotation value and with the calculated translation compo-

nents. Iterating through all O1 and O2 object center pairs and

rotating O2 with all α∗ values we can calculate the Euclidean

distance between the rotated and the reference center point:





dx∗

dy∗

dz∗



 = o1 −





cosα∗ sinα∗ 0
− sinα∗ cosα∗ 0

0 0 1



 o2

During the iteration we increase the evidence of each can-

didate, thereafter we find the maximum value in the voting

array which determines the best transformation by the corre-

sponding rotation and translation components, and we trans-

form the LIDAR point cloud into the coordinate system of the

SfM-generated cloud (Fig. 4(i)).

At the last step we project the points of the LIDAR point

cloud onto the image domain using transform T3, which is

obtained as the composition of T1 and T2 (Fig. 5).

3. EVALUATION

We evaluated the proposed method on a new manually anno-

tated dataset containing 104 time frames of Lidar point clouds

and time synchronized image sets with ground truth informa-

tion. We compared our approach to a state-of-the-art target

based offline calibration [2] method. To demonstrate the sig-

nificance of the 2D Mask R-CNN-based semantic filtering of

the SfM point cloud, we also compared two variants of the

proposed method: first we matched the LIDAR frame to the

full SfM point cloud (see Fig. 4(h)); second - as described

in Sec. 2 - we eliminated vehicles from the generated SfM

data before point cloud matching, by propagating the seman-



(a) Proposed approach based on raw SfM (b) SfM cloud with 3D semantic information (c) Prop. approach using Mask R-CNN filter

Fig. 5. Qualitative results of the proposed online LIDAR-camera self-calibration approach. Projections of the LIDAR points

are displayed with green over the camera image. The improvement due to the 2D semantic segmentation based filter (used here

Mask R-CNN) is clearly observable by comparing (a) and (c).

Set* Method
x-error# y-error#

Avg. Dev. Avg. Dev.

Slow

Target-based ref.[2] 2.87 0.47 3.57 0.86

Prop. on raw SfM 6.62 1.35 7.69 1.01

Prop. by Mask R-CNN 5.35 0.98 5.97 0.65

Fast

Target-based ref. [2] 4.78 1.04 6.21 1.03

Prop. on raw SfM 6.75 1.28 7.43 0.97

Prop. by Mask R-CNN 5.49 1.17 5.78 0.87

*Test set names Slow and Fast refer to the speed of the data acquisition platform.

#Error values are measured in pixels.

Table 1. Performance comparison of the target-based (super-

vised) reference technique and the proposed automatic target-

less self-calibration approach without and with using the se-

mantic segmentation (Mask R-CNN) filter.

tic labeling information of the Mask R-CNN through the SfM

pipeline (Fig. 4(i)).

Pixel level projection errors and standard deviations are

shown in Table 1, and some qualitative results are in Fig.

5. Advantages of applying the Mask R-CNN filter are ob-

servable at each stage of the evaluation. Although numerical

results show that the offline target-based calibration method

can ensure higher accuracy, calibrating the camera and the LI-

DAR with [2] is a lengthy process, taking more than 1 hour.

When parameters change during measurements (e.g., sensor

displacement) one needs to stop driving and repeat the offline

calibration process. Another artifact of conventional offline

calibration [2] comes from platform motion: due to the nature

of the RMB scanning, as the speed of the sensor increases the

shape of the point cloud gets distorted. Since offline calibra-

tion can only be performed with a static vehicle, its accuracy

may decrease as the car moves with higher speed. The effect

of this phenomenon is also shown in Table 1.

The proposed method calculates the correspondences be-

tween camera and LIDAR online during the operation of the

vehicle and calculations can be repeated online periodically,

thus, the average 5−6 pixel error can be acceptable consider-

ing we process camera images with relatively large resolution

(1288× 964). At this resolution with 5− 6 pixel error we are

able to robustly assign the 3D objects to the corresponding

image regions using the calculated projection matrix, and this

data fusion enables the autonomous vehicles to extract more

visual features from the surroundings.

There can be situations when we cannot produce a robust

SfM point cloud, which might increase registration errors.

However, the intended use case of the proposed approach is

to periodically repeat the online alignment, and only update

the calibration when the current transformation estimate im-

proves upon the previously used one. Currently we perform

such updates at fixed time intervals.

Since the proposed approach is based on an object level

alignment method, the quality of the registration is greatly de-

pend on the amount and the type of the detected objects. Our

experiments show that the proposed method performs better

if the scenes contain vertical objects such as traffic signs, tree

trunks and poles, so after the object detection we count such

objects based on simple geometric constraints and we only

calculate the calibration if the given scene seems appropri-

ate. Typically in the case of main roads and larger crossroads

containing several vertical landmark objects the proposed al-

gorithm works more robustly.

4. CONCLUSION

This paper proposed a targetless camera-LIDAR sensor self-

calibration approach using 2D-3D data fusion, that can be per-

formed on the fly, and updated periodically during the data

capturing process, thus eliminating the need of lengthy of-

fline sensor calibrations. The method uses a series of cam-

era frames, along with their semantic segmentations, from a

continuous time-window and the captured LIDAR sensor data

to perform automatic 2D-3D registration and alignment. We

evaluated the proposed method in real life scenarios using real

sensors and data. In the future, we are working to make the

method even more robust, lightweight, further decrease the

average registration error, and incorporate it into autonomous

vehicle processing and navigation pipelines.
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