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Kivonat	

	

Napjainkban	 egyre	 nagyobb	 automatizálási	 kényszer	 figyelhető	 meg	 az	 élet	 számos	

területén.	A	hatalmas	adattömeg	kezelése	és	feldolgozása,	melyet	a	különböző	szenzorok	

állítanak	elő	egy	olyan	kihívás,	amit	emberi	erőforrással	nem	lehet	hatékonyan	megoldani.	

Ez	a	 tendencia	a	vizuális	 szenzorok	 területén	 is	megmutatkozik.	Az	elmúlt	pár	évben	a	

különböző	 lézerszenzorok	és	a	háromdimenziós	térképező	rendszerek	óriási	 fejlődésen	

mentek	 keresztül.	 Várhatóan	 a	 széleskörű	 felhasználhatóságuk	 és	 a	 nagy	 precizitásuk	

miatt	a	sorozatgyártás	után	az	áruk	is	drasztikusan	csökkenni	fog,	ahogy	ez	más	szenzorok	

esetében	is	megfigyelhető	volt,	például	az	optikai	kamerák	esetében.		

A	 Velodyne	 Lidar	 szenzorjait	 önjáró	 járművek	 navigálásához	 tervezték.	 A	 szenzor	 egy	

360°-os	 2,5	 dimenziós	 pontfelhőt	 állít	 elő	 a	 környezetéről,	 akár	 15-20	

időkeret/másodperc	 sebességgel.	 A	 Google	 önjáró	 járműjei	 már	 több	 mint	 öt	 éve	

használják	a	Velodyne	lézerszkennerjeit,	de	a	különböző	nagyértékű	munkagépek	például	

a	 Dubaji	 olajkitermeléseknél	 használt	 dömperek	 is	 fel	 vannak	 szerelve	 a	 szenzorral.	

Önjáró	járművek	és	különböző	megfigyelési	feladatok	(térfigyelő	rendszerek)	esetében	a	

valós	idejű	feldolgozás	az	egyik	legnagyobb	kihívás.		

A	 különböző	 városrekonstrukciós,	 mérnöki	 (hídtervezés)	 és	 úthálózat	 karbantartási	

feladatok	esetében	a	valós	idejű	feldolgozás	nem	játszik	kulcsszerepet,	de	a	feldolgozási	

folyamatok	 automatikus	 gyorsítására	 elengedtethetetlenül	 szükség	 van.	 Ezen	 típusú	

térképező	 rendszerek	 nagyon	 pontos	 és	 nagy	 sűrűségű	 színes	 pontfelhő	 részleteket	

állítanak	elő,	melyeket	egy	közös	geo-referált	koordinátarendszerbe	transzformálnak.	Az	

így	kapott	több	100	millió	vagy	akár	milliárd	pontot	tartalmazó	pontfelhőkben	az	egyes	

objektumok	 automatikus	 detektálása,	 vagy	 az	 adathalmaz	 zajmentesítése	 hatékony	

automatikusa	algoritmusok	létrehozását	igényli.		

Dolgozatomban	bemutatom	az	iparban	is	használt	piacvezető	lézerszenzorokat	és	a	mobil	

térképező	 rendszerek	 esetén	 bemutatom,	 hogyan	 lehet	 a	 kamerakalibrációs	

információkat	 felhasználva	 a	 kamerák	 2D	 képei	 és	 a	 3D	 pontfelhők	 között	 egyértelmű	

megfeleltetést	 találni.	 A	 további	 fejezetekben	 a	 pontfelhő	 feldolgozás	 alaplépéseit	

mutatom	be,	úgymint	pontfelhő	tisztítás,	szegmentáció,	objektum	detekció	és	objektum	

felismerés,	továbbá	áttekintést	adok	a	szakirodalom	aktuális	eredményeiről.	A	fejezetek	

között	 egy	 jelzőtábla	 detekciós	 algoritmus	 bemutatására	 is	 sor	 kerül,	 mely	 egy	 ipari	

rendszerbe	is	beépítésre	került.		

Munkám	során	a	RIEGL	és	a	Velodyne	cég	szenzorjai	által	készített	adatokon	dolgoztam,	

melyet	az	MTA	SZTAKI	EEE	laborja	és	a	Budapest	Közút	Zrt.	biztosított.		

	 	



 

6 

Abstract	

	

Security	and	surveillance	issues	in	dynamic	urban	environments	receive	a	major	attention	

in	 various	 application	 fields,	 such	 as	 traffic	 management	 and	 control	 environment	

protection,	 accident	 and	 crime	 prevention.	 To	 ensure	 an	 optimal	 exploitation	 of	

environmental	information,	besides	traditional	image	sensors,	real-time	3D	data	sources	

are	 frequently	 used	 nowadays.	 A	 Lidar	 laser	 scanner	mounted	 on	 the	 top	 of	 a	moving	

vehicle	provides	a	measurement	sequence,	where	each	frame	is	a	three-dimensional	point	

cloud,	and	the	coordinate	system	of	 the	consecutive	point	cloud	frames	 is	continuously	

updated,	following	the	vehicle's	motion.		

Urban	 environment	 planning	 is	 another	 interesting	 applications	 of	 the	 Lidar	 laser	

scanners.	To	ensure	the	best	coverage,	fixed	and	mobile	mapping	systems	are	often	used	

in	parallel.	However,	the	sensors	utilized	in	such	tasks,	differ	significantly	from	the	above	

mentioned	 real	 time	 scanners:	 they	 are	 designed	 for	 collecting	 homogeneous,	 high	

precision	 and	 dense	 point	 clouds,	 which	 can	 be	 exploited	 through	 offline	 processing.	

Dealing	with	urban	planning	tasks	includes	3D	city	reconstruction	and	road	survey	and	

registering	street	furniture	components	(benches,	dustbins)	and	traffic	controllers	(traffic	

lamps	and	sings)	into	databases.						

Thus,	using	Lidar	scanners	we	can	directly	obtain	accurate	4D	(space	+	time)	geometric	

information	 from	 the	 scene,	however,	 the	analysis	of	 the	point	 clouds	presents	 several	

challenges	for	the	automatic	pattern	recognition	and	reconstruction	algorithms.		

I	will	mainly	deal	with	 the	measurement	 of	 two	 specific	 state	 of	 the	 art	 Lidar	 systems	

(namely	(RIEGL	VMX-450	and	RIEGL	VZ400),	which	can	capture	homogeneous	and	high	

density	point	clouds,	moreover	by	recording	optical	photos	in	parallel	with	laser	scanning,	

they	 can	 assign	 RGB	 information	 to	 the	 captured	 point	 clouds.	 To	 achieve	 this	 goal,	 I	

implemented	a	software	tool	for	projecting	the	3D	points	on	to	the	corresponding	images	

using	 the	 camera	 calibration	 parameters,	 and	 I	 also	 developed	 a	 frustum	 based	 back	

projection	algorithm	which	enables	the	accurate	3D	localization	of	objects	recognized	in	

the	 image	 domain.	 The	 second	 part	 of	 the	 work	 gives	 insight	 of	 various	 point	 cloud	

processing	techniques,	in	part	using	the	above	mentioned	RIEGL	scanners,	and	in	part	with	

utilizing	 Velodyne's	 real-time	 Lidar	 sensors.	 First	 I	 present	 point	 cloud	 filtering	 and	

segmentation	methods,	then	I	propose	several	object	detection	techniques	in	point	clouds,	

and	 in	 the	 last	 section	 of	 my	 work	 I	 introduce	 a	 feature	 extraction	 method	 and	 a	

convolutional	deep	neural	network	for	identifying	various	objects	such	as	car,	pedestrian	

and	street	furniture	in	point	clouds.	At	the	end	of	each	section,	an	application	example	is	
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given,	which	is	part	of	an	algorithm	pipeline	of	road	sign	filtering,	segmentation,	detection	

and	classification	as	a	realization	of	a	complex	urban	planning	application.	

As	mentioned	above,	in	the	course	of	my	work,	I	used	point	clouds	obtained	by	the	RIEGL	

VMX-450,	RIEGL	VZ400	and	Velodyne	HDL64-E	Lidar	devices.	The	point	cloud	data	was	

recorded	on	the	streets	of	Budapest	and	it	was	provided	by	Budapest	Közút	Zrt.	(RIEGL	

scans)	and	MTA	SZTAKI	(Velodyne	data).		

My	aim	has	been	to	develop	and	implement	such	methods	and	algorithms,	which	are	able	

the	 use	 2D	 image	 and	 3D	 space	 information	 simultaneously.	 I	 have	 shown	 that	 the	

combination	of	different	type	of	information	allows	to	create	more	accurate	models	and	

we	can	solve	more	complex	problems.	 	



 

8 

1. Introduction	
	

In	the	last	decade	the	capacity	of	the	hard	drives,	and	the	performance	of	the	CPU	and	GPU	

units	have	significantly	increased	thus	managing	a	huge	amount	of	data	can	be	achievable.	

Nowadays,	there	are	a	lot	of	applications	where	observing	large	city	scenes	or	areas	is	a	

crucial	need.	

Due	 to	 the	 above	 developments,	 in	 the	 recent	 years	 Lidar	 devices	 have	 evolved	 very	

quickly.	Their	performance	became	higher,	while	their	size	and	weight	declined	steadily.	

Today,	a	lightweight	Lidar	sensor	can	be	mounted	even	on	a	drone.	Therefore,	we	can	scan	

out-of-the-way	and	dangerous	areas,	 furthermore	 large	progress	has	been	made	 in	 the	

field	 of	 sensor	 fusion,	 sensor	 calibration	 and	 data	 registration.	 As	 part	 of	 a	 calibrated	

mobile	or	terrestrial	mapping	system	certain	Lidar	sensors	such	as	the	RIEGL	VMX	450	

and	 RIEGL	 VZ400	 produce	 homogenous,	 high	 density	 point	 clouds	 with	 RGB	 color	

information	assigned	to	each	point.	Then	the	colorized	point	clouds	are	transformed	into	

a	global	world	coordinate	system	so	the	result	is	a	registered	colorized	high	density	and	

accurate	point	cloud.	

	

In	 this	 thesis	 I	 propose	novel	 algorithms	dealing	with	 various	problems	of	point	 cloud	

processing	 and	 3D	 scene	 understanding.	 During	 the	 work	 I	 dealt	 with	 point	 clouds	

produced	by	different	types	of	sensors	such	as	the	RIEGL	VMX-450	multi-sensorial	mobile	

mapping	system	and	the	Velodyne	HDL	64-E	real	time	laser	scanner.		

In	Section	1	and	2,	I	give	an	overview	on	the	bases	of	laser	scanning	and	I	introduce	the	

sensors	I	used	in	this	work.		Section	3	introduces	the	theoretical	bases	of	sensor	and	data	

fusion	and	I	present	a	method	which	I	implemented	to	project	the	3D	points	onto	image	

domain	and	back.	Section	4	deals	with	the	bases	of	point	cloud	filtering	and	it	proposes	an	

efficient	 traffic	 sign	 filtering	 algorithm.	 In	 Sec.	 5	 I	 propose	 a	 novel	 hierarchical	 data	

structure	 and	 several	 algorithms	 for	 point	 cloud	 scene	 segmentation	 and	 object	

separation.	 Section	 6	 deals	with	 object	 recognition	 in	 point	 clouds.	 Here	 I	 propose	 an	

efficient	feature	extraction	method	and	a	deep	learning	architecture	for	classifying	various	

urban	objects	such	as	vehicles,	pedestrians	and	street	furniture.		

Furthermore,	through	the	sections	I	describe	a	traffic	sign	detection	pipeline	-	integrated	

already	 into	 Budapest	 Közút's	 industrial	 system	 –	 as	 a	 realization	 of	 the	 mentioned	

algorithms.		
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1.1	Applications	

Point	cloud	processing	involves	lots	of	opportunities	and	industrial	trends	show	that	it	can	

be	used	by	different	research	areas.	The	high	geometric	accuracy	of	point	clouds	obtained	

by	 laser	 scanning	 is	 already	 used	 in	many	 engineering	 applications,	 such	 as	 designing	

bridge	 and	 building	 structures,	 detecting	 material	 errors	 or	 monitoring	 structural	

changes.	The	technology	allows	the	detection	accuracy	of	centimeters	or	even	millimeters	

[1].		

Another	 interesting	application	area	 is	urban	planning.	 It	can	be	divided	 into	two	main	

parts.	The	 first	one	 is	 engineering	design	 (as	mentioned	above)	and	 the	 second	part	 is	

street	 furniture	 annotation	 and	 registration	 into	 databases.	 These	 databases	 help	 the	

traffic	 management	 authorities	 to	 create	 accurate	 statistics,	 which	 contributes	 to	 the	

improvement	of	transport	and	the	maintenance	of	the	road	network.		

A	 few	years	 ago	 the	 entertainment	 industry	 also	 started	 to	 utilize	 laser	 laser	 scanning	

technologies.	 One	 direction	 is	 the	 cinema	 and	 advertising	 industries,	 and	 some	 new	

generation	computer	games	also	use	point	cloud	based	engines	for	environment	modeling.	

The	bottleneck	of	the	technology	is	the	real	time	point	cloud	rendering,	but	today	there	

are	particular	industrial	solutions,	such	as	Euclideon’s	Unlimited	Detail	engine	[2]	which	

is	able	to	deal	with	the	problem.	

	

The	colorized	point	clouds	mentioned	above	may	have	very	high	accuracy	and	high	density	

to	achieve	the	best	visual	experience.	On	the	other	hand,	applications	such	as	surveillance,	

autonomous	 driving	 and	 robotics	 demand	 real-time	 processing	 and	 decision	 making,	

whose	 Lidar	 sensors	 produce	 lower	 density	 point	 cloud	 sequences	 with	 high	 update	

frequency.	The	flagship	company	is	today	the	Velodyne	Inc.	in	this	segment.	Their	sensors	

are	used	by	Google	driverless	cars	and	by	several	winners	of	the	DARPA	grand	challenges.						

	

1.2	Sensors	in	3D	technology	

Beside	Lidar	technology,	several	sensors	play	role	in	the	field	of	3D	data	capture.	One	of	

the	most	well-known	3D	sensors	 is	 the	Kinect	manufactured	by	Microsoft.	 It	 is	a	depth	

sensor	and	in	the	first	place	it	is	designed	for	Xbox	for	the	game	industry.	Although,	it	is	

the	cheapest	sensor	we	mention,	but	it	produces	relatively	dense	and	accurate	point	cloud	

from	range	0.5	to	4.0	meter,	so	several	research	projects	use	its	data.	Time-of-flight	(ToF)	

cameras	such	as	Mesa	are	another	sort	of	data	providers	in	3D	vision.	It	is	a	range	imaging	

camera	system	from	5	to	10m	maximum	scanning	distance	but	its	price	is	about	ten	times	

more	expensive,	than	Kinect	which	only	costs	$100.	The	stereo	vision	concept	uses	multi	

camera	system	to	extract	the	3D	information	from	the	scene.	Each	optical	camera	observes	
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the	same	scene	from	a	slightly	different	viewpoint,	and	using	the	calibration	information	

the	platform	matches	the	relative	object	positions	in	the	different	images	and	calculates	

the	3D	coordinates.		

Generally,	Lidar	is	a	more	expensive	technology,	than	the	others	mentioned	above	but	it	is	

more	accurate	and	it	works	well	in	natural	lighting	conditions.	Furthermore,	its	detection	

range	can	be	much	larger	than	the	others,	for	example	the	Velodyne	HDL-64E	Lidar	sensor	

may	 acquire	 data	 from	 150	 meters.	 Using	 Kinect	 and	 ToF	 cameras	 in	 outdoor	

environments	is	practically	impossible	because	they	operate	in	near	infrared	range	and	

the	 light	 of	 the	 Sun	 blind	 them,	moreover	 their	 scan	 range	 is	 smaller	 than	 10	meters.	

Though	 stereo	 systems	work	well	 in	outdoor	and	 see	 farther	 than	10	meters	but	 their	

installation	and	calibration	process	is	very	complex	and	time-consuming.		

	

1.3	Lidar	

The	 term	 Lidar	 was	 created	 as	 “light”	 and	 “radar”.	 So	 Lidar	 is	 a	 radar	 that	 measures	

distance	by	emit	a	laser	beam	and	analyzing	the	echo	time	of	the	laser.	In	practice,	laser	

scanning	can	be	divided	 into	 four	main	categories:	aerial,	hydrographic,	 terrestrial	and	

mobile	 laser	 scanning.	The	airborne	 laser	 scanning	enables	 the	mapping	of	 large	areas	

therefor	it	is	often	used	in	urban	planning	and	vegetation	survey.	By	using	terrestrial	Lidar	

technology	(due	to	the	high	point	density)	more	accurate	and	largely	detailed	3D	models	

can	be	created,	which	properties	are	crucial	requirements	in	architectural	and	engineering	

applications.	Finally,	mobile	laser	mapping	allows	quick	surveys	of	the	road	network	and	

environment,	 furthermore	 it	 can	 contribute	 to	 the	 management	 of	 mobile	 robots	 and	

driverless	vehicles	[1].	

As	for	the	technology	background,	the	Lidar	calculates	the	distance	between	the	sensor	

and	the	target	objects	from	the	echo	time	of	the	emitted	and	the	detected	laser	beam	where	

the	 beam	 spreads	 with	 the	 speed	 of	 light.	 The	 result	 of	 the	 measurement	 is	 a	 highly	

accurate	3D	point	cloud	where	the	coordinates	of	the	points	are	given	in	a	local	or	global	

coordinate	system	depending	on	the	type	of	the	Lidar	system	and	the	application	area.		

	

In	the	course	of	the	thesis	I	mostly	focus	on	mobile	laser	scanning	(MLS)	technologies,	so	

the	 proposed	 and	 implemented	 algorithms	 are	 designed	 for	 MLS	 data	 type.	 Only	 for	

demonstration	purpose	I	give	some	insight	into	terrestrial	(TLS)	and	air	borne	point	cloud	

processing.	
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2. Laser	Scanning	
	

All	of	ALS,	TLS	and	MLS	are	laser	scanning	technologies	thus	these	sensors	have	the	same	

theoretical	 backgrounds,	 but	 they	 differ	 in	 the	 types	 of	 the	 Lidar	 scanner	 and	 the	

supplementary	 sensors.	ALS	has	 several	main	 applications	 such	 as	 large	 area	mapping	

(cities	and	fields),	vegetation	and	coastline	detection	and	3D	city	modelling.	In	this	case	

the	 Lidar’s	 scanning	 range	 is	 very	 large	 up	 to	 several	 km,	 but	 the	 resolution	 of	 it	 is	

relatively	low,	so	the	maximum	point	density	is	50	points/m2.	TLS	is	the	opposite	of	ALS	

in	the	meaning	of	point	density	and	the	size	of	the	scanning	area.	It	can	gather	500	000	

points/m2,	however	due	to	the	difficult	preprocessing	work	(managing	huge	amount	of	

data,	noise	filtering	and	registration),	it	can	be	used	only	for	scanning	objects,	buildings	or	

small	 areas.	 Best	 quality	 MLS	 sensors	 produce	 up	 to	 several	 thousands	 points/m2	 by	

driving	 at	 normal	 urban	 speed	 limit	 (30-60	 km/h)	 and	 their	 scanning	 range	 is	 also	

between	the	range	of	ALS	and	TLS.			

	

2.1	Mobile	Laser	Scanning	

Beside	one	or	several	Lidars,	a	navigation	system	and	a	calibrated	camera	system	are	also	

included	in	MLS	platforms.	The	navigation	system	consists	of	a	global	navigation	satellite	

system	(GNSS)	for	positioning	and	an	internal	measurement	unit	(IMU)	to	determine	the	

orientation.	The	best	MLS	systems	produce	high	quality	geo-referenced	point	clouds	in	a	

global	coordinate	system	and	2-3	cm	accuracy	is	achievable	in	the	point	cloud.	In	urban	

environment	 mapping	 MLS	 collect	 several	 hundred	 million	 or	 billion	 points,	 so	 data	

storing,	managing	and	processing	tasks	are	very	challenging.	

	

2.1.1	RIEGL	VMX-450	Lidar	sensor	

VMX-450	 is	 a	 high	 speed	 mobile	 laser	

scanning	system	for	data	acquisition	[3].	It	is	

mounted	onto	the	top	of	a	moving	car	and	it	

offers	extremely	dense,	accurate	and	feature-

rich	 data	 even	 at	 high	 driving	 speed.	 The	

system	 integrates	 two	 RIEGL	 VQ-450	 laser	

scanners,	 IMU,	 GNSS	 and	 a	 well-design	

camera	platform	ensures	mounting	up	to	six	

digital	cameras.	Each	of	the	two	VQ-450	laser	

scanners	provides	low-noise,	gapless	360°	frames	at	a	measurement	rate	of	550	thousand	

Figure	1	VMX-450	MLS	system	
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points/sec.	 The	 camera	 system	 completes	 the	 scan	 data	 with	 precisely	 time-stamped	

images.	 Typical	 applications	 include	 mapping	 of	 transportation	 infrastructure,	 city	

modeling,	network	planning	and	surveying	of	mining.		

	

2.1.2	Velodyne	HDL-64E	Lidar	sensor	

Figure	2	illustrates	the	Velodyne	HDL-64E	sensor.	

It	has	been	designed	to	navigate	autonomous	cars	

and	 ships.	 It	 has	 a	 360-degree	 horizontal	 and	 a	

26.8-degree	 vertical	 angle	 of	 view	 with	 5-15	 Hz	

operating	 speed.	 It	 has	64	 laser	beams	and	 it	 can	

produce	 1.3	 million	 points/second.	 It	 provides	 a	

2.5D	point	cloud	within	a	120m	range.	Beside	 the	

3D	 relative	 positions,	 the	 points	 also	 contain	 an	

intensity	 value	 what	 gives	 the	 strength	 of	 the	

returned	 laser	 beam.	 This	 intensity	 value	 highly	

depends	on	the	the	angle	of	incidence	and	the	surface	properties	of	the	objects.	Using	the	

mentioned	 Velodyne	 sensor,	 it	 is	 possible	 to	 monitor	 large	 complex	 dynamic	 scenes.	

Experiences	and	trends	show	that	the	64	beam	version	will	be	used	only	for	validation	or	

in	 very	 large	 investments.	 But	 there	 are	 32	 and	 16	 beam	 versions	 and	 their	 price	 can	

decrease	in	series	production	to	affordable	category.		

	

		 	

Figure	2	Velodyne	HDL-64E	Lidar	sensor	
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3. Sensor	and	data	fusion	
	

Nowadays	 data	 fusion	 is	 central	 task	 in	 visual	 surveillance	 and	 Lidar	 mapping	

applications.	If	we	use	more	sensor	modalities	more	accurate	models	can	be	achieved	from	

the	 scene,	 thus	 it	 is	 important	 to	merge	 and	 reconcile	 data	 from	 different	 sensors.	 In	

addition,	with	respect	of	data	fusion	we	can	solve	complex	problems.		

However,	sensor	calibration	and	data	fusion	are	major	challenges	both	of	the	hardware	

and	software	sides.	Very	accurate	sensors	are	required	and	one	of	 the	main	 tasks	 is	 to	

synchronize	the	sensor’s	timestamps	to	each	other.	Furthermore,	data	fusion	is	usually	an	

offline	process,	because	of	the	huge	amount	of	data,	and	in	most	cases	preprocessing	is	

also	needed	for	appropriate	registration.	

	

In	 the	 field	 of	 point	 cloud	 processing	 one	 of	 the	most	 valuable	 additional	 information	

sources	 is	 the	 RGB	 color	 channel.	 Generally,	 the	 color	 information	 is	 provided	 by	

calibrated	high	resolution	cameras.	The	images	are	used	in	a	number	of	operations:	

• they	provide	additional	information	about	the	visibility	and	types	of	objects	in	the	

scene	

• they	 can	 improve	 detection	 accuracy	 through	 incorporating	 color	 information	

besides	geometry	into	the	modeling	process	

• they	can	be	used	for	texturing	the	reconstructed	geometric	models	

	

Three	 different	 cases	 can	 be	 distinguished	 by	 joint	 utilization	 of	 3D	 point	 clouds	 and	

images:	

• independent	photography:	there	is	no	direct	connection	between	the	photo	and	

the	point	cloud	acquisition	process.	

• applique	photography:	the	camera	is	connected	to	a	laser	scanner	by	some	sort	

of	adapter.	Calibration	is	required	to	map	the	camera	image	onto	the	point	clouds	

and	vice	versa.		

• built-in	camera:	photography	and	scanning	are	executed	in	parallel	by	the	same	

device.		

	

The	following	sections	give	an	overview	of	the	image	and	point	cloud	registration.	Two	

main	 cases	 can	 be	 distinguished.	 First,	 the	 point	 cloud	 points	 are	 projected	 onto	 the	

corresponding	 pixels	 of	 the	 image.	 Second,	 image	 pixels	 are	 back	 projected	 to	 the	 3D	

points.	Both	cases	were	implemented	and	tested	during	my	thesis	work.		
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3.1	Point	cloud	projection	onto	image	pixels	

In	this	section,	I	introduce	the	mathematical	background	of	point	cloud	projection	onto	an	

image	 which	 task	 can	 be	 solved	 in	 real-time.	 Accurate	 camera	 and	 Lidar	 scanner	

calibration	and	synchronization	are	essential	parts	of	successful	operation.	By	using	the	

integrated	RIEGL	mapping	system	the	calibration	and	synchronization	process	are	solved	

by	 on	 hardware	 level	 but	 some	 post-processing	 of	 the	measurement	 is	 needed	 by	 the	

operators.	

	

In	the	applique	system	illustrated	in	Figure	3,	the	laser	scanner	and	the	

camera	have	two	separate	coordinate	systems.	These	local	coordinate	

systems	can	be	transformed	into	a	common,	unified	coordinate	system	

using	the	corresponding	transformation	matrices.	

The	 laser	 scanner’s	 3D	 point	 coordinates	 are	 given	 in	 a	 global	

coordinate	 system.	To	 transform	3D	points	onto	 the	2D	 image	pixels	

(called	projection),	we	need	to	know	the	 internal	state	of	 the	camera	

(camera	matrix),	as	well	as	the	position	and	orientation	of	the	camera	

(rotation	matrix).	

	

The	transformation	matrix	(!)	between	the	point	cloud	and	the	camera	is	the	following:	

" =
$%% $%& $%'
$&% $&& $&'
$'% $'& $''

				
)*
)+
),
	

	

The	matrix	!	transforms	coordinates	measured	in	the	scanner’s	3D	coordinate	system	to	

the	image	plane’s	coordinate	system.	The	matrix	contains	three	rotation	angles	and	three	

offsets.	The	offset	specifies	the	scanner’s	location	in	the	coordinate	system	of	the	project	

and	the	rotation	angles	describe	the	scanner	orientation	with	respect	to	the	projection.	

	

The	camera	matrix	(-)	describes	the	parameters	of	the	camera.	In	the	camera	matrix	.,	

scalars	/* 	and	/+	denote	the	focal	length	of	the	camera,	while	0* 	and	0+	are	the	coordinates	

of	the	principal	point:		

- =
/* 0 0*
0 /+ 0+
0 0 1

	 	

	

During	 the	 data	 transformation	 recorded	 by	 the	 camera	 the	 scales	 should	 also	 be	

considered.	So	the	described	camera	model	is	the	following:	

Figure	3	Applique	
laser	and	camera	

system	
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In	 the	model	 above,	3 	and	4 	represent	 the	 image	 coordinates.	 Each	$:; 	is	 the	 rotational	

component	 of	 perspective	 projection	 matrix	! .	 Scalars	 )* ,	)+ ,	), 	are	 the	 offset	 vector	

components	 and	6 = 7, 8, 9 	is	 the	 observed	 spatial	 point	 in	 the	 scanner's	 Euclidean	

coordinate	system	[1,	4].			

	

3.1.1	Implementation	of	point	cloud	projection	

The	 first	 step	 is	 to	 construct	 the	 corresponding	 $:;	|	) 	and	 camera	 matrix.	 Next	 one	

should	transform	the	3D	points	of	the	cloud	onto	the	2D	image	plane	using	the	constructed	

matrices.	

	

	

	

	

	

	

	

	

	

	

	

Constructing	of	the	 >?@	|	A 	rotation	and	offset	matrix:	

The	3X3	rotation	matrix	is	composed	of	the	three	Euler	angles,	which	are	often	referred	

by	the	yaw,	pitch	and	roll	terms.	The	yaw	describes	a	rotation	with	α	degree	around	axis	

z,	the	pitch	is	a	β	rotation	around	y	axis	and	the	last	one	rotation	is	defined	by	γ	degree	

around	axis	x.		

	

B C, D, E 	= 	B, C B+ D B* E 	= 	
0FGC0FGD 0FGCGHIDGHIE − GHIC0FGE 0FGCGHID0FGE + GHICGHIE
GHIC0FGD GHICGHIDGHIE + 0FGC0FGE GHICGHID0FGE − 0FGCGHIE
−GHID 0FGDGHIE 0FGD0FGE

	

	

It	is	important	to	pay	attention	to	the	order	of	the	matrix	multiplication,	because	this	will	

affect	 the	 final	 transformation.	 This	 common	 rotational-translational	 matrix	 L	|	A 	is	

usually	called	the	matrix	of	the	external	parameters.	The	camera	transform	in	the	static	

Figure	4	Image	captured	by	optical	camera.	
This	is	the	image	plane	where	the	3D	points	

are	projected	

Figure	5	3D	point	cloud	
of	a	traffic	sign	
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point	 cloud	 can	 be	 describe	 using	 the	 L	|	A 	matrix.	 That	 is,	 L	|	A 	transforms	 the	

coordinates	(X,	Y,	Z)	into	a	fixed	coordinate	system	with	respect	to	the	camera.		

7
8
9
= B

6
M
N
+ ),				7O =

*

,
		éG		8O =

+

,
	

	

Finally,	using	the	camera	equation	we	can	obtain	the	pixel	coordinates:		

3 = /* ∗ 7
O + 0*	

4 = /+ ∗ 8
O + 0+	

	

	

Figure	6	shows	the	result	of	the	projection.	It	can	be	seen	

that	there	is	a	clear	link	between	the	points	of	the	point	

cloud	recorded	by	the	Lidar	scanner	and	the	pixels	of	the	

image	captured	by	optical	cameras.		

	

	

	

	

3.1.2	Point	cloud	coloring	

Point	clouds	and	camera	images	used	in	this	tasks	have	been	provided	by	Budapest	Közút	

Zrt.	The	point	clouds	have	been	recorded	by	the	RIEGL	VMX-450	and	RIEGL	VZ-400	mobile	

and	static	scanning	systems	respectively,	as	already	discussed	in	section	2.1.	The	3D	points	

are	 represented	 in	 the	 global	 EOV	 (projection	 system	 of	 Hungarian	 surveying	 maps)	

coordinate	system	format	and	the	density	of	the	point	cloud	varies	between	0.5-3	cm	[3].	

	

In	 Figure	 7,	 the	 colored	 point	 cloud	

demonstrates	 the	 high	 resolution	 of	

the	 sensor,	 and	 the	 nearly	 uniform	

distribution	 of	 the	 recorded	 data.	

Coloring	process	 of	 the	point	 cloud	 is	

based	 on	 six	 cameras	 viewing	 to	

different	directions.	In	areas	where	the	

measuring	 car	 cannot	 pass,	 a	 static	

laser	scanner	(VZ-400)	has	been	used.	

	

Figure	6	The	image	with	the	
projected	3D	

Figure	7	Scanned	area	(Oktogon,	Budapest)	by	VMX-450.	
Figure	shows	the	colored	point	cloud	recorded	by	the	Lidar	

scanner	and	colorized	by	optical	cameras	
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Point	cloud	coloring	is	the	same	process	as	already	described	in	Section	3.1.	Once	the	point	

cloud	 is	 screened	 into	 image	 pixels,	 the	 pixel	 color	 information	 is	 assigned	 to	 the	

corresponding	 3D	 points.	 Another	 interesting	 question	 is	 how	 to	 determine	 an	 object	

found	at	a	given	pixel	position	in	the	3D	space.	For	example,	by	traffic	sign	recognition,	we	

may	often	localize	a	given	object	by	its	pattern	in	the	2D	image,	then	we	have	to	determine	

its	accurate	position	and	orientation	in	the	3D	point	cloud	space.	The	next	section	presents	

a	solution	for	this	challenge.				

	

3.2	Supporting	3D	processing	by	using	image	information		

This	 section	 presents	 the	 fundamentals	 of	 extracting	 3D	 information	 from	 calibrated	

camera	 images	and	 it	proposes	a	 frustum	based	back	projection	algorithm	 from	 image	

domain	to	the	3D	space.		

	

Stereo	vision	

Extraction	 of	 3D	 information	 from	 digital	 images	 cab	 be	 achieved	 using	 stereo	 vision	

techniques.	 In	most	cases,	 two	calibrated	cameras	are	placed	recording	the	same	scene	

from	slightly	different	view	points.	So	 the	projection	centers	do	not	coincide	with	each	

other.	 The	 advantage	 of	 such	 a	 system	 is	 that	 the	 relative	 depth	 information	 can	 be	

obtained	 by	 comparing	 the	 images.	 3D	 reconstruction	 can	 be	 performed	 by	 simple	

triangulation	[5].		

Although	the	MLS	system	discussed	in	this	section	is	not	a	stereo	camera	system,	but	the	

cameras	are	calibrated	and	the	proposed	methods	extract	3D	information	from	the	images	

using	the	stereo	vision’s	doctrines.	The	main	aim	is	to	improve	the	effectiveness	and	the	

accuracy	of	the	3D	processing	by	using	2D	image	information	and	to	obtain	more	robust	

results.	Next	we	describe	the	realization	of	the	methods	mentioned	above.		

	

Let	us	assume	that	a	particular	object	or	image	region	is	detected	in	the	image	by	a	pattern	

recognition	algorithm	(e.g.	template	matching).	To	determine	its	position	in	the	3D	cloud,	

the	following	steps	are	required:	

• calculating	the	2D	bounding	box	

• back	projection	of	the	vertices	of	the	bounding	box	to	the	3D	space	

• starting	lines	from	the	3D	camera	center	through	the	3D	bounding	box	vertices	

• determining	the	3D	points	inside	the	frustum		

• determining	the	common	sections	of	several	frustums		
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3.2.1	Back	projection	of	image	information	in	3D	space	

	

	

	

	

	

	

Several	methods	exist	in	the	literature	to	calculate	bounding	boxes.	Most	of	the	algorithms	

are	based	on	Principal	Component	Analysis	(PCA)	[6,	7]	but	there	are	other	approaches	as	

well	[8].	This	study	does	not	deal	with	the	bounding	box	detection	problem	the	presented	

method	starts	with	given	corner	points.		

	

Back	projection	of	a	given	2D	image	point	generates	a	line	in	the	space:	

Q C = C ∗ !RS + C ∗ -	

• !R	 is	 the	 pseudo-inverse	 of	 the	! 	projection	 matrix	 presented	 in	 section	 3.1.	

!R	can	be	 calculated	 as	 follows:	!R = !T(!!T)W% 	and	 !!R = X ,	where	X 	is	 the	

identity	 matrix,	 (note	 that	 the	 OpenCV	 library	 provides	 an	 efficient	 SVD	

decomposition	method	for	calculating	the	!R	matrix).		

• -	is	 the	camera	origin	[x	position,	y	position,	z	position,	1]	 in	 the	homogeneous	

coordinate	form	and	S	is	the	2D	pixel	coordinate	also	in	homogeneous	form.		

• C	is	a	freely	selectable	parameter	which	determines	the	3D	point	distance	from	the	

camera	center,	but	it	is	just	an	optional	point	in	the	line.		

	

	

	

	

	

	

	

	

	

	

Figure	8	2D	point	projection	back	to	3D	space	

Figure	9	Triangulation	
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To	obtain	the	actual	3D	position	of	the	2D	point	we	need	at	least	two	cameras	and	the	point	

must	be	visible	at	least	in	two	images	as	Figure	9	shows.	In	the	intersection	of	the	two	lines	

we	get	the	corresponding	3D	point.	This	technique	is	based	on	stereo	vision.	

	

3.2.2	View	of	frustum		

The	 four	 corner	 points	 of	 the	 bounding	 box	 define	 a	 frustum	 in	 the	 3D	 space	 and	 the	

frustum	 includes	 those	 3D	 points	 which	 belong	 to	 the	 part	 of	 the	 image	 within	 the	

bounding	box.	The	view	frustum	is	the	key	to	localize	an	object	detected	on	the	image	in	

the	point	cloud.	For	example,	the	algorithm	may	find	a	flat	surface	in	the	point	cloud,	which	

consists	of	several	different	types	of	regions.	In	this	case,	due	to	the	cloud’s	it	is	limitations	

almost	impossible	or	very	hard	to	separate	these	areas.	However,	in	the	image	domain	the	

algorithm	 can	 use	 color	 and	 texture	 information	 supporting	 the	 separation	 and	 in	 the	

computer	 vision	 literature	 there	 exit	 a	 lot	 of	 pattern	 recognition	 techniques	 such	 as	

template	matching,	which	can	efficiently	cope	with	the	task	[9,	10].	Once	the	regions	are	

separated	in	the	image	using	the	frustum	concept	we	get	the	distinct	areas	of	the	plain	in	

the	3D	cloud.		

	

	

Figure	10	shows	the	view	frustum,	i.e.	the	volume	of	space	which	contains	everything	that	

is	 visible	 in	 the	 3D	 scene.	 The	 frustum	 is	 bounded	 by	 six	 planes,	 where	 four	 of	 them	

correspond	to	the	edge	of	the	screen	and	the	remaining	two	planes	are	the	near	(n)	and	

far	(f)	planes,	defined	by	the	minimum	and	maximum	distances	visible	from	camera.	The	

projection	plane	is	perpendicular	to	the	camera’s	viewing	direction	and	lies	at	the	distance	

Figure	10	The	view	frustum	encloses	the	space	bounded	by	the	near	plane,	the	far	plane	and	four	side	
planes.	
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from	the	camera.	The	angle	α	is	called	the	

horizontal	 field	 of	 view	 angle.	 The	 four	

side	 planes	 of	 the	 view	 frustum	 carve	 a	

rectangle	out	of	the	projection	plane.	The	

camera	 space	 normal	 directions	 for	 the	

six	view	frustum	planes	are	also	shown	in	

Figure	 10.	 The	 4D	 plane	 vectors	

corresponding	to	the	six	sides	of	the	view	

frustum	 are	 summarized	 in	 Table	 1	

where	normal	directions	for	the	four	side	planes	have	been	normalized	to	unit	length	[11].	

	

3.2.3	Extracting	corresponding	point	indices	using	the	frustum	concept	

The	used	algorithms	are	based	on	the	presented	fundamentals	from	section	3.		The	first	

step	in	out	proposed	method	extracts	a	geometric	shape	from	the	3D	point	cloud,	which	is	

similar	 to	 the	 shape	 of	 the	 interested	 regions.	 In	 the	 next	 step	 the	 extracted	 shape	 is	

projected	onto	the	image	plane	using	the	manner	mentioned	in	section	3.1.	The	different	

types	of	regions	are	separated	in	the	image	plane	using	pattern	recognition	techniques.	

Finally,	the	algorithm	uses	the	frustum	concept	and	the	extracted	bounding	boxes	on	the	

image	to	determine	the	individual	parts	of	the	3D	volume.			

	

3.2.4	Calculate	the	position	of	a	3D	point	elative	to	the	frustum	

At	this	point	the	algorithm	using	the	frustums	is	able	to	determine	the	individual	sections	

of	the	space	and	now	it	just	has	to	decide	whether	a	given	point	of	the	cloud	is	inside	one	

of	the	frustum.	

	

	

	

	

	

	

	

	

	

	

Table	1	Plane	vectors	

Figure	11	Result	of	the	algorithm,	blue	dots	represents	the	extracted	sign	
head	
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Figure	 11	 demonstrates	 the	 frustum	 based	 point	 cloud	 segmentation	 where	 the	 blue	

points	are	inside	the	pyramid.	To	determine	if	a	point	is	within	the	pyramid,	the	algorithm	

substitutes	the	point	into	the	side	plane	vectors.			

Y7 + Z8 + .9 + [ = 0	

So	the	form	above	is	a	commonly	written	plane	equation	where	Y, Z	and	.	are	the	7, 8	and	

9 	components	 of	 the	 normal	 vector	\ 	and	[ = −\ ∗ " .	 The	 algorithm	 normalizes	 the	

normal	vector	to	unit	length,	because	in	that	case	the	equation	

] = \ ∗ " + [	

gives	the	signed	distance	from	the	plane	to	an	arbitrary	"	point.	If	] = 0,	then	the	point	"	

lies	in	the	plain.	If	] > 0,	we	say	that	the	point	"	lies	on	the	positive	side	of	the	plane	since	

!	would	be	on	the	side	in	which	the	normal	vector	points.	Otherwise,	we	say	that	the	point	

lies	on	the	negative	side	of	the	plane.		

It	follows	that	a	3D	point	is	inside	the	pyramid	if	the	results	of	the	four	substitution	give	

the	same	solution	with	respect	to	the	sign.	So	if	all	of	the	result	are	–d	or	all	of	them	are	+d	

regardless	of	 the	size	of	d,	 then	the	point	 is	 inside	the	pyramid.	With	this	approach	we	

obtain	 the	 specific	 points	 inside	 the	 pyramid,	 but	 the	 extracted	 points	 contain	 specific	

parts	in	front	and	behind	the	plate	too.		The	solution	came	from	the	field	of	stereo	vision.	

The	method	uses	another	 image	with	a	different	camera	view	where	a	new	pyramid	 is	

formed.	Intersection	of	the	two	pyramid	exactly	specifies	the	points	of	the	desired	object,	

which	are	the	points	of	the	plate	of	a	traffic	sign	in	this	example.	Instead	of	calculating	the	

intersection	of	the	pyramid,	the	algorithm	should	only	test	those	points	which	have	been	

extracted	 from	 the	 previous	 pyramid.	 This	 simplification	 makes	 the	 algorithm	 more	

effective.					
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4. Point	cloud	filtering	
	

Point	 clouds	 produced	 by	 laser	 scanners	 provide	 highly	 accurate	 3D	 information.	

However,	 in	many	 cases,	 the	 large	 number	 of	 reflections	 and	 the	 unexpected	 or	 ghost	

objects	generate	a	lot	of	noise	and	redundant	data.	So	generally	the	first	step	in	point	cloud	

processing	is	some	kind	of	data	filtering	and	cleaning.	The	noise	filtering	can	greatly	affect	

the	operations	of	the	further	algorithms	and	also	plays	an	important	role	 in	the	quality	

assurance	 of	 the	 final	 results.	 In	 addition,	 it	 also	 greatly	 reduces	 the	 running	 time	 of	

various	processing	steps.	So	preliminary	data	filtering	is	essential	for	obtaining	accurate	

results	and	performance.		

	

Various	kind	of	artifacts	can	be	generated	[38]	during	the	scanning	process:	

1. Sensors	have	physical	limitations	which	facts	can	lead	to	noise	in	the	recorded	

data.	

2. “Ghost”	 objects	 can	 be	 generated	 by	motion	 artifact.	 MLS	 and	 TLS	 systems	

transform	 the	 points	 into	 global	 coordinate	 system,	 so	 moving	 objects	 (cars,	

pedestrians)	appear	as	stretched,	noisy	phantom	blobs.	

3. Outliers	are	also	generated	by	multiple	reflections.	

4. Due	to	occlusion	and	critical	reflectance	properties,	holes	and	missing	parts	can	

be	present	in	the	surfaces	of	the	models.		

	

Several	basic	filtering	methods	exist	in	the	literature.	These	ones	use	usually	general	point	

cloud	 properties	 such	 as	 distance	 between	 points,	 density	 of	 the	 local	 parts	 or	 point	

number.	Outlier	removals	eliminate	lonely	points,	which	are	mostly	generated	due	to	the	

inaccuracy	of	the	sensor.	If	inside	a	search	radius	the	minimum	number	of	point	neighbors	

are	 smaller	 than	 a	 predefined	 threshold,	 the	 algorithm	 removes	 the	 point.	 Statistical	

removals	examine	the	normal	distribution	of	a	point	neighborhood	and	if	the	point	is	far	

from	the	global	mean,	they	remove	the	point.		

Pass	through	filters	simply	remove	the	points	which	are	out	of	a	given	spatial	range.		

	

Figure	 12	 demonstrates	 the	motion	 artifact	 and	 the	multiple	 reflection	 errors.	 In	 both	

cases,	the	upper	part	of	the	figure	illustrates	the	original	point	clouds	before	filtering	and	

the	lower	part	of	the	image	represents	the	cleaned	point	clouds.	As	one	can	see,	the	clouds	

contained	huge	amount	of	noise	and	phantom	objects,	which	were	efficiently	removed.	
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Manual	 point	 cloud	 cleaning	 is	 very	

exhausting	 and	 time	 consuming	

process	 however	 it	 is	 indeed	used	 in	

the	entertainment	field	such	as	movie	

productions	or	game	industry,	where	

visual	 impression	 is	 the	 most	

important	 factor.	 We	 developed	 an	

annotation	 tool	 for	 cleaning	 point	

clouds	very	precisely	in	a	manual	way.		

The	right	side	of	Figure	12	illustrates	

the	using	of	the	annotation	tool	where	the	first	step	is	to	mark	off	the	removable	points.	

Using	 the	mouse	 and	 keyboard	 we	 can	 define	 clip	 planes	 to	 determine	 the	 undesired	

points.	 The	method	 saves	 the	 index	 positions	 of	 the	marked	 points	 in	 the	 point	 cloud	

vector	 and	 during	 a	 post-processing	 step,	 the	 points	 of	 the	 annotated	 objects	 were	

removed	from	the	point	cloud	array	based	on	their	indices.		

	

In	applications	where	visual	experience	is	not	so	important,	automatic	noise	filtering	is	an	

applicable	key	 step	before	 further	operations.	 In	 the	 following	 I	propose	an	automatic,	

effective	method	for	filtering	point	clouds	of	traffic	signs.	The	main	goal	is	to	remove	as	

much	noise	as	possible,	while	we	should	preserve	the	points	of	the	traffic	sign.	As	input,	

we	have	obtained	cylinder	shaped	point	cloud	segments	from	Budapest	Közút,	where	each	

segment	contained	a	complete	traffic	pole	with	one	or	multiple	traffic	signs	and	possible	

additional	street	objects	such	as	tree	parts.	With	other	words,	the	extracted	point	clouds	

include	not	only	the	signs,	but	also	all	objects	in	the	local	environment	of	the	traffic	pole	

within	a	radius	r.	

	

General	traffic	sign	characteristics	in	the	point	cloud	

• The	head	of	a	sign	is	essentially	a	2D	shape	in	3D	space,	because	one	direction	of	

its	extension	is	always	negligible	relatively	to	the	other	two	directions.	

• Points	 reflected	 from	 the	 surface	 of	 the	 sign	 show	 regularity.	 Due	 to	 the	

characteristic	of	the	sensor	the	points	are	arranged	in	n	rows	and	m	columns	and	

the	distance	between	the	points	is	consistent.	

• In	most	cases	the	head	of	the	sign	has	high	reflectivity,	in	other	words,	it	is	retro-

reflective.	 Consequently,	 the	 sensor	 assigns	 high	 intensity	 values	 to	 the	

corresponding	points	which	can	be	efficiently	separated	from	their	surroundings	

in	this	way.	

Figure	12	TLS	point	clouds	before	and	after	noise	filtering	
and	the	annotation	process	on	the	right	side	
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My	proposed	point	cloud	filtering	algorithm	consists	of	two	main	process:	

1. The	input	shape	file	is	an	infinity	cylinder	respect	to	the	direction	of	up	(z)	axis.	To	

speed	up	the	filtering	process,	in	the	first	step	the	algorithm	removes	the	ground	

and	the	points	with	extremely	high	elevation	values	using	simple	thresholds.	

2. Based	on	the	remaining	point	cloud,	the	algorithm	builds	a	Kd-tree,	then	the	points	

are	filtered	using	point	density	and	point	normal	features,	with	also	considering	

the	local	intensity	properties.		

	

Conventional	3D	processing	usually	uses	sphere	of	radius	r	for	neighborhood	search.	To	

ensure	efficiency	and	accuracy	I	considered	the	properties	of	the	sign	and	I	proposed	a	

cylinder-shaped	neighborhood	for	the	analysis.	

	

Cylinder-based	neighborhood	search	

The	sign’s	head	has	a	flat	shape,	and	we	have	experienced	hat	during	the	neighborhood	

search,	it	is	better	to	use	a	cylinder	kernel	instead	of	a	sphere.	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	 13	 illustrates	 the	 cylinder-based	 neighborhood	 search.	 Using	 this	 approach,	

density-	and	distribution-based	filtering	operations	proved	to	be	much	more	efficiently,	

because	this	sort	of	neighborhood	takes	into	account	the	shape	characteristic	of	the	sign.	

In	this	way,	I	could	apply	powerful	filtering	criteria,	e.g.	when	it	was	necessary	I	increased	

the	number	of	 required	points	within	 a	 given	 radius.	Using	 statistical	 analysis	of	point	

neighborhoods,	most	parts	of	the	vegetation	can	be	filtered	effectively,	exploiting	the	lack	

of	structural	regularity.	For	comparison,	we	experience	that	using	sphere-based	search,	

much	more	part	of	the	vegetation	remained.	

	

Figure	13	Cylinder-based	
search	

Figure	14	Normal-based	filtering	
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Normal-based	filtering	

Figure	 14	 illustrates	 the	 estimated	 surface	 normal	 vectors	 assigned	 to	 the	 points.	 The	

algorithm	calculates	the	normal	vectors	based	on	an	n	neighborhood	using	the	cylinder	

approach.	It	can	be	seen	that	the	normal	vectors	of	the	sign	surface	point	towards	similar	

directions	with	 only	minor	differences.	On	 the	 other	 hand,	 the	direction	 of	 the	normal	

vectors	belonging	to	 the	vegetation	or	 the	 traffic	pole	have	 large	variety.	This	property	

also	 takes	 the	 advantage	 of	 the	 previously	 mentioned	 ground	 filtering	 step.	 Since	 the	

ground	 has	 been	 removed	 during	 a	 pre-filtering,	 the	 estimation	 and	 analysis	 of	 the	

normals	is	significantly	faster,	and	the	extracted	planar	regions	correspond	indeed	to	the	

traffic	sign	heads.	Besides	applying	the	density	and	normal	vector	based	filtering	criteria,	

we	 include	 an	 additional	 intensity	 constraint	 to	 the	 points	with	 high	 intensity	 are	 not	

removed	 in	 any	 cases,	 thus	 the	 algorithm	 keeps	 signs	 with	 noisy	 shape	 but	 high	

reflectivity.	

	

The	following	figures	demonstrate	the	output	of	the	filtering	method.	It	can	be	observed	

how	noisy	the	raw	input	cloud	is	and	beside	the	signs	many	other	objects	can	be	found	in	

the	scene.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	15	Unfiltered	traffic	sign	point	clouds	
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Figure	16	shows	the	output	of	the	filtering	method.	It	can	be	seen	that	the	method	also	

retains	the	columns	beside	the	sign	head.	It	will	be	important	to	further	processing.	

	

While	the	above	introduced	point	cloud	filtering	(removing	outliers,	noise	and	undesired	

regions)	is	a	preprocessing	step,	in	order	to	clean	the	data	for	further	processing	such	as	

scene	segmentation	and	object	detection,	 in	the	next	section	I	propose	an	efficient	data	

structure	for	efficient	point	cloud	management	and	object	detection.	

	 	

Figure	16	Filtered	traffic	sign	point	clouds	
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5. Point	cloud	segmentation	and	object	detection	
	

Extracting	various	urban	regions	and	objects	from	3D	point	clouds	is	a	critical	task	in	many	

applications	since	the	accuracy	of	perception	and	object	recognition	highly	depends	on	the	

quality	of	objet	detection	and	separation.		

On	one	hand,	processing	huge	amount	of	data,	point	density	variation	and	noise	are	major	

challenges	in	point	cloud	based	object	detection.	On	the	other	hand,	at	object	level	several	

further	 problems	 occur	 such	 as	 overlapping	 between	 objects	 and	 the	 presence	 of	

incomplete	visible	object	shapes	caused	by	occlusion.	In	real	world	scenarios	inter-	and	

intra-class	 shape	 variations	 and	 orientation	 differences	 highly	 influence	 the	 result	 of	

object	extraction.		

	

In	 the	 following	 I	 give	 insight	 of	 the	 object	 detection	 literature,	 and	 at	 the	 end	 of	 this	

section	 I	 propose	 a	 data	 structure	 and	 various	 algorithms	 which	 I	 implemented	 for	

efficient	objet	detection.		

	

In	 the	 literature	of	urban	point	cloud	scene	analysis,	 the	main	 focus	 is	 to	extract	 traffic	

signs,	 pole-like	 objects,	 roads,	 building	 facades,	 cars	 and	 pedestrians.	 The	 majority	 of	

existing	object	detection	methods	can	be	divided	into	two	main	groups.	Methods	from	the	

first	category	are	based	on	prior	knowledge,	while	the	second	group	of	techniques	uses	

global	shape	descriptors.		

We	can	find	several	paper	about	object	detection	based	on	prior	knowledge.	In	[19]	road	

markings	are	extracted	based	on	intensity	and	height	information,	and	[41]	detects	road	

markings	in	point	clouds	and	geo-referenced	intensity	images.	Road	edge	detection	using	

splines	and	peak	extraction	is	introduced	in	[42].	Detecting	facades	and	buildings	are	also	

very	important	and	relevant	in	this	field.	[43]	uses	a	marked	point	process	algorithm	to	

detect	 building	 from	 airborne	 point	 clouds.	 Special	 features	 are	 generated	 from	 point	

clouds	to	detect	buildings	in	[44].	In	[18]	pole-like	objects	are	detected	based	on	a	scan	

line	 structure,	 while	 [15]	 detects	 poles	 by	 considering	 their	 geometric	 properties.	

Detecting	repeated	structures	 [45]	can	be	achieved	using	Fourier	analysis,	 for	example	

detecting	a	 row	of	 similar	windows	 in	 a	 given	building	 facade	 is	 an	 interesting	 related	

problem.	

Object	 detection	 based	 on	 global	 and	 partial	 shape	 descriptors	 is	 the	 other	 highly	

referenced	 technique.	While	global	 techniques	need	very	accurate	pre-segmentation	as	

precondition,	partial	 shape	based	detection	 tolerates	well	 the	 segmentation	noise.	 [46]	

uses	the	super	voxel	idea	to	segment	the	point	cloud	then	the	segments	are	merged	into	
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objects.	The	surface	growing	method	used	in	[47]	segments	the	cloud	into	various	clusters	

which	 are	 used	 as	 primitive	 shapes	 volumes.	 [25]	 detects	 small	 objects	 in	 urban	

environment.	 [48]	 is	 a	 typical	part-based	method	 for	object	detection	using	 the	Hough	

forest	framework.		

Because	 of	 occlusion,	 overlapping	 between	 objects	 and	 the	 above	mentioned	 artifacts,	

accurate	point	cloud	segmentation	and	object	detection	are	still	challenging	problems	in	

complex	environments	such	as	real	urban	scenarios.		

	

5.1	Point	cloud	managing	technique			

In	point	cloud	processing,	generally	the	first	step	before	object	detection	is	that	we	assign	

predefined	 labels	 (ground,	 object,	 vegetation)	 to	 each	 points.	 It	 is	 called	 point	 cloud	

segmentation.	We	have	to	build	an	efficient	data	structure	to	reach	the	point	neighborhood	

in	 order	 to	make	 the	 segmentation	 and	 further	 processing	 steps	 achievable.	 After	 the	

segmentation	step,	 it	 is	necessary	to	determine	criterions	to	group	the	points	and	their	

neighbors	into	objects	or	groups	of	objects.	There	are	several	well	established	approaches	

for	building	the	point	neighborhood	model	such	as	different	space	partitioning	trees,	like	

octal	tree	or	kD-tree	[6],	 furthermore	regular	voxel	models	and	2D	grid	based	methods	

[49]	are	also	often	used.		

	

5.2	Partitioning	tree	based	methods		

Let	assume	a	division	which	always	splits	the	space	into	two	sides	considering	the	point	

density,	 so	 that	 the	 size	of	 the	 two	halves	are	proportional	with	 the	 local	density.	This	

method	leads	to	a	binary	tree	structure	what	is	called	the	binary	space	partitioning	tree	

(BSP-tree).	If	the	plane	which	divides	the	space	is	always	perpendicular	one	of	the	axes	of	

the	coordinate	system,	it	is	called	a	kD-tree	structure.		

If	we	split	each	node	into	exactly	eight	children	without	considering	the	point	density,	then	

we	get	an	octal	tree	(octree).	By	comparing	kD-trees	to	octrees,	we	can	emphasize	that	a	

kD-tree	 adopts	 very	 precisely	 to	 the	 characteristic	 of	 the	 data.	 Using	 different	 type	 of	

clustering	methods	in	the	tree	structure	we	can	perform	very	robust	and	accurate	object	

detection,	but	kD-tree	based	space	partitioning	also	has	some	drawbacks.	While	reading	

the	point	neighborhood	is	very	fast	in	kD-tree,	but	constructing	the	tree	is	often	very	slow.	

Moreover,	if	we	work	with	streaming	data	then	we	have	to	rebuild	the	tree	at	each	new	

frame	which	cannot	be	a	real	time	processing.	Octrees	are	more	robust	for	streaming	data	

so	 they	 are	 more	 commonly	 used	 in	 dynamic	 environments	 especially	 in	 game	

development.		
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After	the	space	partitioning,	one	of	the	most	commonly	used	clustering	technique	is	the	

floodfill	algorithm.	Parameterization	of	the	floodfill	method	can	be	determined	efficiently	

for	a	given	object	type	such	as	car	or	pedestrian,	but	in	most	cases	there	is	no	option	to	

find	a	parameterization	which	performs	well	for	the	whole	object	set.	Thus,	octree	and	kD-

tree	based	algorithms	often	over-	or	under-partition	the	3D	space.		

	

5.3 Regular	2D	grid	and	3D	voxel	model	
2D	grid	based	methods	define	a	2D	lattice	in	the	first	step	what	is	fitted	onto	a	horizontal	

plane,	typically	to	the	estimated	ground	plane	[50].	In	the	case	of	regular	grids,	the	cells	

have	the	same	size.	After	the	grid	is	created,	the	mapping	algorithm	assigns	each	points	of	

the	cloud	to	the	corresponding	grid	cell,	so	that	the	assignment	is	actually	a	projection	to	

the	ground	plane.	After	all,	the	grid	cells	contain	some	local	parts	of	the	cloud.	The	meaning	

of	grid	based	segmentation	that	we	assign	a	class	label	to	each	grid	cell	(and	not	to	each	

point	separately)	based	on	the	extracted	statistical	properties	(density,	height,	scattering)	

of	the	local	point	cloud	parts	stored	in	the	given	cell.	The	size	of	the	cells	has	a	great	effect	

to	the	computation	time	and	the	segmentation	result.	Using	smaller	cell	size,	in	most	cases	

the	 cells	 do	 not	 contain	 enough	 points	 to	 extract	 relevant	 information	 from	 them.	

Furthermore,	decreasing	the	cell	size	results	in	longer	processing	time,	because	there	are	

more	cells	in	the	same	region.	In	case	of	larger	cell	size,	the	computation	time	is	fast,	but	

often	too	many	points	belong	to	one	cell.	Since	the	base	unit	of	the	method	is	the	cell,	if	

parts	of	different	objects	correspond	the	same	cell,	the	algorithm	will	merge	them	into	one	

object.	 Finding	 the	 optimal	 discretization	 size	 is	 very	 challenging,	 because	 of	 the	 high	

variance	in	the	point	density	and	the	great	variety	between	the	object	shapes	in	realistic	

point	cloud	scenes.		

The	basic	principle	of	3D	voxel	models	is	very	similar	to	the	mentioned	2D	grid	method.	It	

is	only	expanded	among	 the	 third	dimension	and	 the	algorithm	create	a	3	dimensional	

multi-array	instead	of	a	2	dimensional	grid.		

	

We	 have	 proposed	 an	 efficient	 two	 level	 grid	 structure	 for	 object	 segmentation	 in	 [8],	

however,	it	has	a	notable	artifact.	Let	assume	that	an	object	lying	on	the	ground	and	for	

example	a	crown	of	a	 tree	or	a	wire	 is	hanging	over	 it.	 In	 this	case	some	parts	of	 them	

belong	to	the	same	cell	and	because	there	is	no	vertical	partition	the	further	algorithms	

merge	them	into	one	object.	In	this	thesis,	I	propose	an	efficient	data	structure	which	can	

solve	this	problem.		
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5.4	Sparse	Voxel	World	

In	my	thesis	work,	based	on	the	previously	mentioned	techniques,	 I	combined	the	best	

practices	 and	 I	 designed	 an	 efficient	 data	 structure	 for	 scene	 segmentation	 and	 object	

detection.	In	the	following	I	present	this	data	structure	called	Sparse	Voxel	World	(SVW).	

	

	

Figure	17	Sparse	Voxel	World	

 

Figure	17	 illustrates	 the	 implemented	SVW.	The	base	element	of	 the	SVW	 is	 the	voxel,	

where	voxel	is	a	cube	volume	of	the	space.	First	of	all,	a	voxel	contains	a	local	part	of	the	

point	cloud,	furthermore	inside	the	voxels	several	properties	and	features	are	calculated.	

Figure	17/b	illustrates	a	higher	level	part	of	the	SVW,	called	the	pillar.	Basically,	the	pillar	

is	a	group	of	voxels	which	belong	to	the	same	base	grid	cell,	where	the	base	grid	is	formed	

from	the	lover	level	voxels.	Finally,	Figure	17/d	represents	the	complete	SVW	structure.	

We	can	see	that	pillars	are	not	fully	filled,	so	voxels	are	only	created	if	there	is	data	on	the	

given	space	region.	Furthermore,	 it	 is	 important	 to	note,	 that	 inside	 the	pillars	we	may	

even	find	empty	voxels	space,	let	us	consider	as	a	typical	example	when	a	tree	hangs	over	

a	car.	Figure	18	shows	a	realization	of	the	SVW.		
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Figure	18	SVW	realization.	Left	side	illustrates	the	pillar	structure	and	the	right	side	shows	the	sparse	voxel	
structure	

In	the	above	figure	we	can	see	the	pillar	and	the	voxel	structure	in	a	real	urban	scenario.	

This	sample	is	created	with	a	voxel	size	of	0.5	meters.	If	we	fill	the	whole	space	with	voxels	

then	we	get	a	structure	with	a	total	number	of	15345	voxels,	but	using	SVW,	our	structure	

contains	only	1492	voxels.	If	I	decreased	the	voxel	size	to	20	centimeters,	then	this	rate	

was	230076	–	9803.	(More	than	20	times	difference!)	Using	SVW	we	can	reach	much	better	

performance	in	processing	time	and	memory	usage.		

	

5.4.1	Create	the	SVW	structure	

Before	the	algorithm	creates	the	SVW,	it	removes	extremely	high	and	low	altitude	points	

from	the	point	cloud.	In	the	first	step	the	point	cloud	is	sorted	among	the	height	dimension.	

The	algorithm	searches	the	ground	region	what	contains	lots	of	point	and	there	are	small	

height	differences	between	the	points.	Here	we	filtered	out	those	group	of	points	that	are	

close	 to	 each	 other	 but	 the	 group	 contains	 only	 few	 hundred	 points.	 Practically,	 these	

points	are	under	the	ground	level	and	decrease	the	performance	of	the	further	processing.	

Though,	 the	 filter	method	 loops	 through	 the	 cloud	 starting	 from	 the	 lowest	 point	 and	

clusters	the	regions	until	it	finds	the	first	large	connected	region	(ground).	If	the	ground	

region	 is	 founded,	 the	points	below	 the	 given	height	 level	 are	 removed	 from	 the	point	

cloud.		

	

After	filtering,	the	dimensions	(X,	Y,	Z-height)	of	the	cloud	are	recalculated:	

	

]H_`IGHFI* = max
*

− min
*
	

]H_`IGHFI+ = max
+

− min
+
	

]H_`IGHFI, = max
,

− min
,
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Furthermore,	 the	 method	 calculates,	 how	 many	 voxels	 can	 be	 stored	 among	 each	

dimension	with	respect	to	the	voxel	size:	

	

4F7`fI3_* =
g:hijk:ljm
nl*io	k:,i

	,	4F7`fI3_+ =
g:hijk:ljp

nl*io	k:,i
,	4F7`fI3_, =

g:hijk:ljq
nl*io	k:,i

	

	

Instead	of	creating	a	full	3D	voxel	grid	containing	(4F�`fI3_* ∗ 	4F7`fI3_+ ∗ 	4F7`fI3_,)	

voxels,	the	method	creates	a	(4F7`fI3_* ∗ 	4F7`fI3_+)	sized	2D	voxel	grid	referred	as	base	

grid	as	shown	in	Figure	17/c.	This	base	grid	is	responsible	for	storing	the	actual	pillars.		

The	projection	method	loops	through	the	point	cloud	and	assigns	each	point	to	a	voxel	as	

follows:	

rFG* =
rFHI)* − min

*

4F7`fI3_*
, rFG+ =

rFHI)+ − min
+

4F7`fI3_+
, rFG, =

rFH�), − min
,

4F7`fI3_,
	

	

rFG*, rFG+	sI]	rFG,	determine	the	3D	position	of	the	voxel.	If	the	given	voxel	exists	inside	

the	 corresponding	 pillar,	 the	 method	 simply	 adds	 the	 point	 to	 the	 voxel,	 otherwise	 it	

creates	first	the	voxel	and	adds	it	to	the	right	pillar,	then	it	adds	the	actual	point	to	the	new	

voxel.	In	the	implementation,	pillars	are	represented	as	vectors	and	since	the	point	cloud	

is	sorted	among	the	height	dimension,	in	the	consecutive	pillar	voxels	are	created	in	an	

increasing	order.	So	the	first	element	of	the	pillars	is	the	lowermost	voxel.		

	

Figure	19	Pillar	structure	implementation	

 

Figure	19	represents	the	potential	cases	of	the	pillar	structure.	The	most	basic	case	occurs	

when	over	the	given	base	grid	cell,	there	are	no	points,	so	the	pillar	is	empty,	as	subfigure	

19/a	shows.	In	Figure	19/b	the	object	is	contiguous,	because	there	is	no	empty	voxel	space	

in	the	pillar.	Figure	19/c	represents	the	mentioned	case	above	when	a	tree	hangs	over	an	

object.	We	can	see	that	the	indices	are	continuous	in	the	vector	but	the	real	positions	are	

also	stored	in	the	voxels,	so	that	the	length	of	the	pillar	vector	is	three,	but	we	know	from	

the	position	fields	number	of	empty	voxel	spaces	between	the	voxels.		



 

33 

When	 a	 new	voxel	 is	 created,	 the	 algorithm	 links	 it	with	 its	 neighboring	 voxels.	 A	 3x3	

kernel	determines	the	potential	pillars	in	the	base	grid,	and	if	the	difference	between	two	

voxel	positions	 is	 smaller	 than	 two	 in	absolute	value,	 the	algorithm	connects	 the	given	

voxels.	This	linked	sparse	voxel	structure	provides	efficient	neighborhood	search	using	as	

much	memory	as	needed.		

	

5.5 Voxel	computation	unit	
Voxel	is	the	basic	computation	unit	in	SVW.	Several	local	properties	are	calculated	inside	

only	one	voxel	but	 some	 features	 are	 computed	using	 several	neighboring	voxels.	This	

voxel	based	computation	method	can	work	very	efficiently	in	a	parallel	way,	furthermore	

the	linked	structure	ensures	efficient	traversal	between	neighboring	voxels.		

	

5.5.1	Feature	extraction		

The	next	properties	are	computed	continuously,	during	the	projection	process,	whenever	

the	points	are	assigned	to	the	voxels:	

• centroid:	the	mass	of	the	local	point	cloud	belonging	to	the	given	voxel		

• min	and	max	values:	the	extremes	among	each	dimension		

• point	number:	the	number	of	points	belonging	to	the	local	point	cloud	

• voxel	intensity:	the	average	intensity	inside	the	voxel	

• voxel	color:	the	average	color	inside	the	voxel	

	

In	 3D	 the	 local	 neighborhood	 contains	 at	 most	 26	 voxels.	 To	 measure	 the	 statistical	

properties	of	it,	a	PCA	is	performed	[51].	Let	 	t% > 	 t& > 	 t'	be	the	principal	components	

and	u% > 	 u& > 	 u'	the	corresponding	eigenvalues.	These	values	are	stored	in	the	voxels	and	

further	 features	 are	 computed	 from	 them.	t% 	is	 the	 normal	 of	 the	 fitted	 plane	 and	t'	

determines	 the	 main	 axis	 of	 this	 plane.	 When	 the	 points	 are	 projected	 to	 a	 principal	

component,	the	variance	is	equal	to	the	corresponding	eigenvalues,	thus	the	total	variance	

is	equal	the	sum	of	the	eigenvalues.		

Examining	 the	 variance	 in	 each	 direction,	 the	 algorithm	 determines	 the	 linearity	 and	

flatness	properties	inside	the	neighborhood.		

	

If	u%	is	large	(u%	>	0.7)	compared	to	the	others,	it	means	that	the	included	points	lie	on	a	

line,	so	the	voxel	neighborhood	defines	a	linear	structure	such	as	poles	or	wires.	Linearity	

is	defined	as	follows:	

v = 	
u%

u% + u& + u'
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If	the	total	variance	is	defined	by	the	two	largest	eigenvalues	that	means	points	lie	on	a	

plane:		

w = 1 −	
u'

u% + u& + u'
	

If	w>	0.6	 the	voxel	 is	 classified	as	 flat	voxel.	Typically	ground	parts,	wall	 segments	and	

parts	of	larger	objects	are	built	from	flat	voxels.		

Unstructured	 regions	 can	 also	 be	 detected	 using	 the	 third	 eigenvalues.	 If	u'>	 0.1	 that	

means	 point	 scattering	 is	 high	 in	 the	 region.	 Vegetation	 and	 noise	 can	 be	 detected	

efficiently	using	this	property.		

	

5.5.2	Segmentation	

I	 implemented	 two	 different	 segmentation	 method.	 The	 first	 one	 is	 based	 on	 height	

evaluation	 comparing	 the	 voxel	 centroids,	 while	 the	 second	 one	 uses	 local	 variance	

properties	based	on	PCA.		

	

Figure	20	demonstrates	the	result	of	the	height	based	segmentation.		

	

	

	

	

	

	

	

	

	

Figure	20	Height	based	segmentation	

	

The	algorithm	loops	through	the	voxels	and	it	assigns	a	class	label	to	each	voxel,	based	on	

its	centroid	height	(centroid_z)	component:		

• ground:	centroid_z	<	0.2m	or	the	given	voxel	is	part	of	the	base	grid	

• high	object:	centroid_z	>	2.5m	

• short	object:		any	other	case	

	

Height	based	segmentation	is	very	fast,	but	it	uses	hard	thresholds,	furthermore	it	does	

not	take	into	account	the	local	properties.	On	the	contrary,	variance	based	segmentation	

is	more	time	consuming,	but	it	examines	the	local	properties	and	ensures	to	obtain	a	more	
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sophisticated	segmentation.	Figure	21	illustrates	the	variance	based	segmentation	result	

for	 two	 scenarios.	 We	 can	 see	 that	 the	 pole-like	 objects	 show	 high	 variance	 in	 one	

direction,	the	ground	regions	are	classified	as	flat	voxels	and	unstructured,	high	scattered	

shapes	such	as	vegetation	are	also	observable.	A	notable	property	of	the	method	is	that	

edge	 regions	 are	 highlighted	 because	 they	 are	 neither	 linear	 not	 flat	 enough.	 In	 the	

following	I	propose	methods	that	use	one	of	the	above	segmentation	models	or	use	the	

combination	of	the	two	segmentation	approaches.		

	

	

	

	

	

	

	

	

	

5.6	Functionality	of	the	base	grid	

In	the	first	step	the	filtering	method	removes	the	noise	under	the	ground	level.	The	base	

grid,	e.g.	 the	 lowermost	voxels	of	 the	pillars	contain	 the	points	of	 the	ground	regions.	 I	

implemented	a	very	fast	and	efficient	ground	detection	method	that	uses	the	base	grid	for	

extracting	 the	 ground.	The	method	uses	 the	 result	 of	 the	 variance	based	 segmentation	

mentioned	in	section	5.5.2.		

The	method	dose	not	use	global	thresholds,	because	in	most	cases	the	ground	has	a	slope	

yielding	 some	elevation	differences	between	 the	 corresponding	points.	 It	 examines	 the	

local	neighborhood	of	the	given	voxel	and	if	the	70%	of	its	neighbors	are	flat	voxels,	and	

the	height	difference	between	the	highest	and	 lowest	points	 inside	 the	voxel	 is	smaller	

than	0.1m	then	it	is	detected	as	ground.		

	

Figure	22	Result	of	ground	detection	

Figure	21	Variance	based	segmentation	
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Figure	22	illustrates	the	result	of	the	proposed	ground	detection	algorithm.	We	can	see	on	

the	 right	 side	 that	 the	 ground	 has	 elevation	 differences	 (stairs),	 but	 the	 algorithm	 can	

manage	the	problem	and	detects	the	ground	region	efficiently.	Needless	to	say,	robust	and	

accurate	ground	detection	 is	very	 important	 for	 further	processing,	especially	 in	object	

detection.	The	object	extractor	can	easily	merge	the	objects	if	their	corresponding	point	

clouds	 are	 connecting	 through	 erroneously	 misdetected	 ground	 points	 between	 the	

object.		

	

5.7	Pillars	as	2D	grid	

Essentially,	pillars	 can	work	as	a	 traditional	2D	grid.	The	minimum	height	point	of	 the	

lowermost	voxel	and	the	maximum	one	of	the	uppermost	voxel	within	a	pillar	define	the	

height	of	the	local	grid	cell.	Basically,	it	is	a	height	map	from	top	level	view.		

	

Figure	23	Object	detection	on	areal	imaginary	data	

	

Figure	 23	 demonstrates	 the	 object	 detection	 method	 based	 on	 [8]	 using	 the	 pillar	

structure.	A	connected	component	method	merges	grid	cells	to	objects	based	on	height	

evaluation.	This	 aerial	 point	 cloud	has	 very	 low	point	density	 (6-8	points/m2),	 but	 the	

height	 based	 object	 detection	 works	 well	 on	 it.	 The	 algorithm	 processing	 time	 varies	

between	 2-4	 sec,	 while	 kD-tree	 based	 region	 growing	 methods	 run	 for	 40-60	 sec,	

furthermore	finding	optimal	parameters	in	the	conventional	region	growing	approach	is	

very	challenging.			

	

5.8	Object	detection	

In	order	to	manage	an	object	as	a	single	unit	we	have	to	define	some	connections	between	

voxels	containing	the	parts	of	the	object.	The	voxel	merging	criterion	is	a	complex	function	

what	takes	the	computed	properties	and	features	of	 the	voxels	and	returns	a	similarity	
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measure	 what	 is	 the	 weighted	 linear	

combination	 of	 the	 parameters.	 If	 the	

similarity	 value	 is	 greater	 than	 a	

predefined	 threshold	 (0.75)	 then	 the	

voxels	are	merged	into	the	same	object	

candidate.	The	algorithm	starts	from	a	

seed	 voxel	 and	 travers	 through	 the	

neighbor	 links	 while	 the	 similarity	

value	is	greater	than	the	threshold.	If	all	

the	neighbor	links	break,	then	the	algorithm	chooses	randomly	a	new	unvisited	seed	voxel	

and	 builds	 a	 new	 object.	 Basically,	 this	 is	 a	 3D	 region	 growing	 algorithm	 in	 the	 voxel	

domain.	Before	the	connected	component	search	starts,	the	ground	points	are	eliminated,	

thus	 the	 objects	 come	 apart.	 The	 merging	 criterion	 is	 very	 sensitive	 for	 the	 point	

cardinality	and	density.	For	MLS	point	clouds	it	is	defined	as	follows:		

• the	Euclidean	distance	of	the	voxel	centroids	must	be	smaller,	than	the	voxel	size	

• the	Euclidean	distance	between	the	eigenvalues	must	be	smaller,	than	0.3	

• if	the	voxels	are	in	the	same	pillar	it	is	a	strongest	weight	

Figure	25	Original	MLS	point	cloud	and	object	detection	result	

	

In	the	Figure	25	above,	we	can	see	on	the	left	side	the	original	point	cloud	and	the	right	

side	presents	 the	 result	 of	 the	object	detection	method	where	 each	 single	 object	 has	 a	

unique	color.	

	

	

 

Figure	24	Object	detection	on	MLS	point	cloud	
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5.9	Traffic	sign’s	head	detection	

	

	

	

	

	

	

	

	

	

	

	

	

We	assume	here	that	after	filtering	out	the	major	parts	of	noise	and	vegetation,	only	planar	

and	pole-like	shapes	remain	back.	Figure	16	is	colorized	by	intensity	and	we	can	see	that	

the	head	of	the	sign	shows	high	intensity	value	because	it	 is	made	from	retro	reflective	

material.	Old	signs	are	eroded	by	the	weather,	so	they	show	lower	intensity.	In	order	to	

detect	both	new	and	old	signs,	the	algorithm	also	uses	the	eigenvalues	concept.	Figure	26	

illustrates	that	the	planar	regions	like	ground	and	sign	plates	are	indeed	segmented	as	flat	

regions	 while	 the	 pole	 contains	 linear	 voxels.	 The	 method	 gives	 larger	 weight	 to	 the	

intensity	based	detection,	but	the	spatial	covariance	matrix	also	plays	an	important	role.		

	 	

Figure	26	Traffic	sign	detection:	eigenvalues	and	intensity	based	coloring	
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6 Object	classification		
	

In	this	section	I	give	an	insight	of	object	classification,	machine	and	deep	learning	concepts	

and	I	propose	algorithms	for	feature	extraction	to	represent	3D	objects	in	2D	form	in	order	

to	make	2D	convolution	achievable	on	the	extracted	feature	maps.	Furthermore,	I	propose	

a	 deep	 neural	 network	 architecture	 which	 was	 implemented	 for	 urban	 objects	

classification	such	as	vehicles,	pedestrians	and	street	furniture.			

	

Classification	is	a	general	process	to	recognize	and	categorize	objects	to	a	class	based	on	

extracted	 features.	 Mathematically	 features	 are	 functions	 that	 map	 from	 the	 instance	

space	 to	 a	 given	 set	 of	 feature	 values.	 In	 other	 words,	 features	 are	 a	 compact	

representation	of	the	object	and	through	extracting	the	right	features	we	can	recognize	

the	object	itself.	In	3D	point	cloud	processing	most	studies	in	the	literature	use	low	level	

features	such	as	object	dimension,	relative	position	to	the	ground	and	local	point	density.	

To	extract	these	features,	usually	they	use	a	bounding	box	fitted	by	applying	a	principal	

component	analysis	(PCA).	

	

Several	research	studies	dedicate	many	efforts	to	model	or	rule	based	object	classification	

using	MLS	data.	Building	and	facade	detection	and	recognition	have	been	studied	in	[12],	

[13],	[14].	Observing	vegetation	is	very	important	in	environment	protection,	furthermore	

the	crown	of	the	trees	uncover	a	lots	of	interesting	regions	and	objects,	so	detecting	them	

is	crucial	in	MLS	and	ALS	processing	[15],	[16].	There	are	many	efforts	in	pole-like	objects	

detection	[17],	[18],	as	well	as	on	ground	and	road	surface	extraction	[19],	[20].		

In	the	field	of	object	based	classification	there	are	several	widespread	techniques,	such	as	

graph	 matching	 [21],	 3D	 shape	 based	 or	 contextual	 processing	 [22]	 and	 using	 prior	

information	and	semantic	rules	[23],	[24]	are	also	very	popular.			

Objects	from	real	world	scenarios	have	various	shape	and	size	contrary	to	the	synthetic	

objects,	 even	 entities	 from	 the	 same	 object	 type	 show	 high	 differences	 because	 of	

occlusion	and	noise.	So	in	the	recent	years,	trends	show	that	the	focus	in	object	recognition	

shifts	the	direction	of	machine	learning	[25],	[26],	[27],	[28],	[29]	mostly	in	Deep	Learning.		

	

6.1	Basics	of	machine	learning	

Machine	learning	(ML)	is	concerned	with	using	the	right	features	to	build	the	right	models	

that	achieve	the	right	tasks.	Finding	the	best	features	is	essential,	because	a	model	is	only	

as	good	as	its	features.	Depending	on	the	desired	output	model,	machine	learning	task	can	
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be	clustering,	regression	and	classification	and	from	the	side	of	the	learning	type	we	can	

distinguish	supervised	or	unsupervised	learning.		

	

Unsupervised	learning	finds	the	structure	in	data	without	using	predefined	class	labels.		

• Clustering	is	a	typical	type	of	it	where	the	goal	is	to	group	the	input	into	groups	

based	on	similarity	between	the	individuals.		

Supervised	learning	works	with	pre-labeled	training	data	to	build	the	model.	

• Regression	produce	continuous	models	rather	than	discrete	ones.		

• Classification	 algorithms	 based	 on	 training	 data	 learn	 the	 mapping	 from	 the	

feature	space	to	the	class	labels	in	order	to	predict	unseen	examples.	

	

The	following	parts	of	the	chapter	focus	on	the	classification	problem	where	objects	are	

extracted	from	urban	scenarios.	In	the	literature	machine	learning	experts	suggest	several	

geometric	based	features,	such	as	the	spin	image	[30],	[25],	point	feature	histograms	[30],	

[26],	hierarchical	descriptors	[30]	and	curvature	and	contour	features	[8].		

The	machine	learning	techniques	mentioned	above	are	based	on	handcrafted,	predefined	

features,	which	are	extracted	in	an	automatic	or	semiautomatic	way	from	the	objects.	In	

the	recent	years,	end-to-end	manner	machine	learning	is	in	the	focus	where	the	learning	

method	finds	and	extracts	the	best	features	from	the	input	in	an	automatic	way.		

	

6.2	Deep	Learning	

Nowadays,	deep	learning	is	the	leading	machine	learning	techniques	in	computer	vision.	

Deep	Neural	Networks	(DNN)	attempt	to	model	the	work	of	the	human	brain	using	many	

hidden	layers	embedded	into	an	artificial	neural	network.	Training	huge	amount	of	data	

in	big	networks	needs	lots	of	memory	and	high	performance	GPU	units,	so	in	the	last	few	

years	NVIDIA	and	Intel	made	huge	effort	to	develop	such	kind	of	chips	[31]	and	now	we	

have	hardware	to	train	millions	of	data	record	in	huge	nets.		

	

Benefits	of	using	DNN:	

• It	 is	 more	 robust	 than	 traditional	 ML	 techniques	 because	 there	 is	 no	 need	 to	

design	the	features,	they	are	automatically	learned	and	optimized	from	input	data.	

• It	is	more	generalizable,	so	we	can	use	the	same	network	for	variant	tasks	and	

data	types.	

• We	 can	 increase	 the	 performance	 by	 adding	 more	 training	 data	 and	 the	 deep	

learning	methods	are	massively	parallelizable.		
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DNNs	 contain	 only	 fully	 connected	 (dense)	 layers,	 but	 in	 this	 thesis	 I	 focus	 on	

Convolutional	Neural	Networks	(CNN)	that	contain	some	convolutional	layers	beside	the	

dense	ones.	Basically,	the	CNN	is	a	kind	of	neural	networks	that	contain	copies	of	the	same	

neurons,	and	this	trick	allows	that	the	network	has	lots	of	neurons	meanwhile	its	actual	

parameter	number	remains	the	same.	In	other	words,	we	have	to	learn	a	neuron	only	once	

and	we	can	use	it	in	many	places.		

	

	

Figure	27	Typical	structure	of	a	CNN	

	

Figure	 27	 demonstrates	 the	 typical	 structure	 of	 a	 convolutional	 neural	 network.	 If	we	

eliminate	the	hidden	layers	and	we	connect	all	the	inputs	directly	in	a	fully	connected	way	

with	a	dense	layer	we	get	a	traditional	neural	network.	Furthermore,	if	we	use	many	dense	

layers,	then	we	can	create	a	deep	neural	network.	But	following	the	brain	learning	concept	

it	is	useful	to	know	about	the	local	properties	of	the	data.	In	case	of	images	we	care	about	

directions	of	edges,	colors,	textures	and	many	other	low-level	features.	For	this	reason,	we	

use	convolutional	layers	to	examine	small	areas	of	the	images.	In	the	figure	above	every	

convolutional	 layer	 has	 only	 two	 inputs	 but	 most	 used	 networks	 the	 convolutional	

window	could	be	much	larger.		
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Figure	28	Connection	between	convolutional	layers	

	

The	output	of	a	convolutional	layer	can	be	fed	into	another	convolutional	layer.	Figure	28	

shows	that	on	each	layer	the	network	can	detect	more	abstract	features.	In	the	first	level	

only	edges	and	colors,	then	more	complex	patterns	and	shapes	etc.	Finally,	the	output	of	

the	 last	 convolutional	 layer	 is	 linked	 into	 a	 dense	 layer.	 We	 can	 think	 about	 that	 the	

convolutional	layers	are	responsible	for	the	feature	extraction	and	learning	while	in	the	

dense	layers	the	associations	are	formed.	In	image	processing	2D	convolution	is	used,	but	

Figure	27	can	only	display	a	slice	of	it,	because	the	neurons	of	the	layers	are	aligned	in	a	

NxM	structure.	In	Figure	27	we	can	also	see	a	max-pooling	layer.	Max-pooling	layer	is	a	

type	of	pooling	layers	where	the	maximum	of	the	features	are	taken	over	small	blocks	of	a	

previous	layer.	Usually,	convolutional	layers	are	connected	through	a	pooling	layer.	Max	

pooling	allows	the	next	convolutional	layers	to	work	with	larger	segments	so	pooling	is	a	

kind	of	zooming	out	function.		

	

Actually,	 a	 convolutional	 layer	 is	 a	 bunch	 of	 neurons,	 but	 one	 neuron	 might	 detect	

horizontal	 edges,	 another	 might	 detect	 the	 contrast	 between	 colors.	 The	 neurons	 are	

randomly	initialized,	so	they	are	not	handcrafted.	These	properties	lead	to	an	end-to-end	

learning	scheme.	The	breakthrough	of	convolutional	neural	network	was	in	2012	when	

Alex	Krizhevsky,	Ilya	Sutskever	and	Geoff	Hinton	published	their	result	on	ImageNet	[32]	

competition,	and	since	that	time	their	network	is	known	as	ImageNet	[33].		

	

6.3 Creating	2D	feature	from	3D	object	

In	the	following	I	present	a	CNN	I	have	developed	to	classify	four	different	type	of	street	

objects:	car,	pedestrian,	wall	segments	and	street	furniture	(mostly	traffic	signs	and	trees)	

from	point	clouds	collected	in	urban	areas	by	a	Velodyne	HDL64	sensor.	For	building	the	

network	 and	 applying	 deep	 learning	 algorithms	 I	 used	 the	Theano	 framework	 [35].	 In	

Theano	there	is	no	3D	convolution	operator	as	in	the	other	public	library.	So	first,	I	had	to	

produce	a	strong	2D	representation	from	the	3D	point	cloud.		
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6.3.1 Extract	2D	feature	from	3D	object	

The	input	of	the	feature	

extraction	 method	 are	

3D	 objects	 containing	

only	 3D	 coordinates.	 In	

the	 first	 step	 the	

algorithm	 transforms	

the	 point	 clouds	 into	

metric	 form.	 It	 is	

necessary	to	use	preprocessing	steps,	because	there	is	a	great	variety	in	the	units	of	the	

different	 datasets.	 After	 preprocessing,	 the	 algorithm	 applies	 a	 PCA	 transformation	 to	

calculate	 the	main	axes	directions	of	 the	object.	The	eigenvectors	corresponding	 to	 the	

first	and	the	second	maximal	eigenvalues	determine	the	main	plane	in	the	3D	space	where	

the	points	are	projected.		

	

Figure	29	illustrates	the	projection	plane	and	the	result	of	the	dimension	reduction.	After	

the	 method	 defines	 the	 projection	 plane,	 it	 assigns	 the	 up	 vector	 (0	 1	 0)	 to	 the	

corresponding	main	direction.	It	is	important	to	retain	the	2D	orientation	of	an	object.	At	

a	pole-like	object	(its	height	is	greater	than	the	other	dimensions)	such	as	traffic	sign	or	a	

pedestrian	the	main	direction	is	closer	to	the	up	vector,	contrary	to	vehicles	where	the	up	

vector	is	closer	to	the	second	main	direction.		

	

After	 the	projection	plane	 is	 calculated,	 the	

algorithm	produces	a	depth	image	from	the	

point	 cloud	as	Figure	30	 shows.	 In	 the	 first	

step	 the	 points	 of	 the	 object	 are	 sorted	

among	 the	 smallest	 dimension,	 so	 the	

method	calculates	the	distance	of	each	points	

from	the	projection	plane	and	sorts	them.	It	

ensures	 that	 the	 farthest	 points	 from	 the	

plane	are	projected	last	time,	so	we	can	keep	

the	 depth	 information	 of	 the	 object	 in	 2D	

form.	 	 The	 image	 is	 colorized	 by	 rainbow	

colors	only	for	demonstration,	actually	it	is	a	grayscale	image	for	practical	purpose	(see	in	

the	next	session).	The	images	have	NxN	shape,	but	the	projected	objects	are	scaled	with	

their	original	aspect	ratio,	furthermore	with	a	global	number	set	to	7	meters.	I	applied	the	

Figure	30	Depth	images	produced	from	point	clouds	

Figure	29	Projection	plane	and	projected	depth	image	
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first	scaling	so	that	the	objects	keep	their	original	shapes	and	the	second	scaling	is	applied	

since	objects	need	to	keep	their	size	difference	between	themselves.	I	set	the	global	scaling	

to	7	meter	because	the	object	detector	method	does	not	search	larger	objects	than	7	meter.	

Figure	31	gives	further	depth	image	examples,	but	these	are	extracted	from	dense	MLS	

point	clouds.	

	

Figure	31	Depth	image	feature	extracted	from	MLS	point	cloud	

		

In	the	next	session	I	give	some	insight	of	the	machine	learning	libraries	I	used	for	solving	

classification	problem,	furthermore	I	present	the	structure	of	the	trained	network.		

	

	

6.3.2 Trying	different	type	of	features		

In	the	training	session	I	used	the	feature	mentioned	above	in	section	6.3.1,	but	I	also	tried	

two	other	 features.	The	 first	 representation	 I	 tried	 contains	 four	projections	 from	 four	

different	directions.	I	projected	the	objects	from	front,	back,	top	and	bottom	view	and	I	

create	a	unified	image	placing	the	slices	next	to	each	other.	Experimental	results	show	that	

about	70%	precision	is	achievable	using	this	feature	but	since	the	image	is	not	coherent,	

it	reduced	the	performance	of	the	auto-feature	extracting	layers.	

I	have	pursued	to	find	a	2D	object	feature	representation	that	is	coherent	and	it	preserves	

the	objects	from	all	sides.	So	I	implemented	a	cylinder	based	projection.	In	the	first	step,	

the	algorithm	determines	the	center	line	of	the	object	what	is	close	to	the	up	vector.	Among	

the	center	 line	a	predefined	radius	determines	 the	surface	of	 the	cylinder.	The	method	

emits	a	perpendicular	“beam”	with	the	center	line	throughout	a	given	point	and	the	point	

is	projected	to	where	this	beam	hits	the	surface	of	the	cylinder.	This	method	gives	slightly	

better	result	than	the	previous	one,	but	because	of	occlusions	and	partial	objects	the	2D	

object	 prints	 show	 a	 high	 variance	 in	 a	 class	 so	 in	 practice	 finding	 a	 good	model	was	

impossible.	I	have	tried	this	cylinder	based	method	on	objects	extracted	from	terrestrial	

laser	measurements	where	 the	 projection	 gives	 a	 vey	 good	 result,	 but	 in	 this	 case	 the	

objects	were	very	accurate.		
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6.4 Theano	and	Lasagne	

I	 used	 the	 Lasagne	 and	 Theano	 frameworks	 [34],	 [35]	 to	 implement	 deep	 learning	

algorithms.	Lasagne	is	a	lightweight	library	to	built	and	train	neural	networks.	It	is	some	

kind	 of	 interface	 to	 make	 it	 easier	 the	 usage	 of	 the	 Theano	 engine.	 Both	 Theano	 and	

Lasagne	are	based	on	Python	language	but	the	core	of	the	Theano	engine	has	been	written	

in	standard	C.	The	engine	is	highly	optimized	and	it	is	capable	to	use	Nvidia’s	GPU	by	CUDA	

supporting.	Using	GPUs	during	the	training	process	can	speed	up	the	learning	time	even	

more	 than	 1000	 times,	 because	 of	 the	massive	 parallelism.	 Theano	 is	 integrated	 with	

NumPy	in	order	to	work	efficiently	with	multi-dimensional	arrays.		

	

6.5 Structure	of	the	network	

I	 was	 following	 the	 LeNet5-style	 [33],	 [36]	 to	 design	 my	 CNN	 for	 classifying	 street	

furniture.	In	addition	to	the	input	and	the	output	layers	I	used	four	convolutional	and	two	

dense	 layers.	 Furthermore,	 I	 applied	 max-pooling	 and	 dropout	 layers	 between	 the	

convolutional	layers.	Figure	32	demonstrates	the	structure	of	the	trained	network.	

Each	 convolutional	 layers	 are	 followed	 by	 a	 2x2	 max-

pooling	and	a	dropout	 layer.	The	first	two	convolutional	

layers	are	7x7,	 the	third	 is	5x5	and	the	 last	one	has	3x3	

shape.	The	first	convolutional	layer	starts	with	32	filters	

and	it	is	doubled	with	every	convolutional	layers	and	the	

dense	hidden	layers	have	512	units.	The	net	was	learning	

for	100	epochs	and	finishing	an	epoch	session	took	about	

30	 minutes.	 The	 whole	 training	 process	 was	 two	 days.	

When	the	learning	starts	we	are	far	from	the	optimum,	so	

we	 want	 to	 learn	 quickly,	 but	 the	 closer	 we	 are	 to	 the	

optimum	the	smaller	we	want	to	step.	Hence,	I	initialized	

the	 learning	 rate	 0.9	 and	 it	 decreased	 linearly	with	 the	

number	of	epochs.		

The	 final	 validation	 accuracy	was	 96.42%	 on	 the	 validation	 set	 what	 is	 a	 pretty	 good	

training	 result	 using	 about	 3000	 training	 and	 500	 validating	 examples.	 Increasing	 the	

number	 of	 training	 examples,	 we	 can	 get	 even	

better	results	and	it	will	help	to	avoid	over	fitting.	

But	 I	used	only	 those	object	 for	 training	what	 the	

object	 detector	 algorithm	 extracted,	 so	 I	 had	 to	

manually	annotate	them	and	it	is	a	slow	process.	In	

the	 near	 future	 I	 will	 plan	 to	 add	 objects	 from	

#   name              size 
---    ---------------    --------------- 
0    input              1x96x96 
1    conv2d1         32x90x90 
2    maxpool1       32x45x45 
3    dropout1        32x45x45 
4    conv2d2         64x39x39 
5    maxpool2       64x19x19 
6    dropout2        64x19x19 
7    conv2d3         128x15x15 
8    maxpool3       128x7x7 
9    dropout3        128x7x7 
10   conv2d4         256x5x5 
11   maxpool4       256x2x2 
12   dropout4        256x2x2 
13   dense1            512 
14   dropout5        512 
15   dense2            512 
16   output            4 
 

Figure	32	Network	structure	

Figure	33	Effect	of	dropout	
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different	 databases	 to	 increase	 the	 size	 of	 the	 training	 set.	 	 Maintaining	 over	 fitting	

problem	I	used	dropout	 [37]	 layers	between	convolutional	and	dense	 layers.	Figure	33	

demonstrates	 the	 effect	 of	 using	dropout	method.	Every	 training	 iteration	 the	dropout	

method	 randomly	 deletes	 a	 portion	 of	 the	 hidden	 layer,	 and	 in	 particularly	 we	 train	

different	nets.	We	expect	that	every	net	over	fit	in	a	different	way,	and	so,	hopefully,	the	

net	effect	of	dropout	will	reduce	the	over	fitting.		

	

I	separated	the	10	percent	of	the	examples	for	testing	purpose	and	the	final	performance	

of	the	prediction	was	evaluated	on	this	set.		

	

Figure	34	Evaluation	of	the	network	

Figure	34	is	the	confusion	matrix	of	a	prediction	and	we	can	see	that	the	main	diagonal	is	

the	most	significant	region	of	it.	In	most	cases	the	net	assigns	each	objects	to	the	preferable	

class.	The	test	above	contained	only	objects	extracted	by	object	detector	[8].	I	completed	

the	 test	set	 from	public	datasets,	especially	with	pedestrians	and	 facade	segments.	The	

tables	below	show	the	performance	on	the	new	dataset.	

	

	

Table	2	Dataset	
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Table	3	Performance	measurement	on	the	completed	dataset	

 

Table	3	shows	that	the	overall	performance	of	the	network	is	88.4%.	Furthermore,	we	can	

see	the	precision,	the	recall	and	the	F-rate	measure	for	each	class	separately.	Figure	35	

presents	the	result	of	the	prediction	process	via	a	Velodyne	point	cloud	frame.	As	we	can	

see	 on	 the	 figure	 below,	 red	 color	 represents	 vehicle	 class,	 green	 is	 presents	 the	

pedestrians,	while	blue	color	is	assigned	to	street	furniture,	such	as	traffic	signs,	pole-like	

objects.	Dark	gray	is	marks	the	facade	class	and	the	uncategorized	point	are	colored	with	

light	gray	color.		

	

	

	

	

	

	

	

	

	

	

	

	

	

The	classification	algorithm	is	integrated	into	a	real-time	object	detection	framework	[8].	

In	[8],	the	objects	were	classified	by	an	SVM.	It	was	only	a	binary	classification	between	

vehicle	and	many	other	objects.	This	work	changes	the	SVM	to	the	proposed	deep	learning	

concept	and	it	performs	a	multi	classification.		

	

The	cited	 framework	has	written	 in	C/C++,	 so	 I	had	 to	write	a	C-Python	wrapper.	This	

wrapper	ensures	to	use	the	Python	based	prediction	from	the	C	environment.	To	achieve	

the	 fastest	working	process,	 the	 feature	 extraction	part	 (produce	 the	2D	depth	 images	

Figure	35	Real	urban	scenario	with	classified	objects	on	the	street	of	Budapest,	Hungary	
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from	the	3D	objects)	is	perform	in	the	C	side	and	only	the	prediction	occurs	in	the	Python	

side.		

	

6.6 Datasets		

The	training	set	contains	3000	samples	mostly	from	the	outputs	of	the	object	detector	[8],	

but	 the	 pedestrian	 and	 facade	 class	 were	 expanded	 from	 Sydney	 [39]	 and	 KITTI	 [40]	

datasets.			

	

6.7	Traffic	sign	classification		

I	have	tired	the	same	network	described	above,	for	traffic	sign	classification.	The	training	

set	contained	1000	samples	from	five	classes.	Figure	36	demonstrates	the	five	classes.		

	

Figure	36	Traffic	sign	classes	(Class0,	Class1,	Class2,	Class3,	Class4)	

The	cropped	RGB	images	were	converted	into	a	grayscale	form,	furthermore	the	algorithm	

resized	 them	 into	 96x96	 size.	 End	 of	 the	 training	 process	 the	 validation	 accuracy	was	

88.74%.	 As	 a	 future	 plan	 to	 achieve	 better	 results	 I	will	 train	 the	 network	with	 lower	

learning	rate	and	I	will	run	the	training	over	more	hundred	iterations.	Furthermore,	it	is	

considerable	to	use	the	color	information	of	the	signs.		

The	trained	network	was	evaluated	in	an	independent	dataset	contains	500	images	from	

the	5	classes.	The	prediction	accuracy	was	79.68%	what	is	a	quiet	promising	result	for	the	

first	try,	because	the	dataset	is	very	challenging.	It	contains	a	lots	of	burnt-out,	too	small	

and	occluded	traffic	signs.	

	

Figure	37	illustrates	the	result	of	the	traffic	sign	

prediction.	The	order	of	the	class	numbers	is	the	

same	as	the	order	on	Figure	36.	You	can	see	that	

the	main	 diagonal	 is	 the	 strongest	 region,	 so	 in	

most	cases	the	net	predicts	well.	Furthermore,	the	

most	miss	classifications	are	observable	between	

Class0	and	Class4	and	between	Class1	and	Class3.		

	

	 	

Figure	37	Traffic	sign	detection	evaluation	
on	the	test	set	
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7 Conclusion		
	

In	the	beginning	of	my	thesis	I	introduced	some	leading	edge	Lidar	sensors	and	I	presented	

the	basics	of	laser	scanning.	In	the	next	chapter	I	gave	insight	some	data	fusion	practice	

between	the	image	and	3D	domain.	I	implemented	a	method	that	projects	the	3D	points	

onto	image	pixels,	furthermore	I	propose	a	frustum	based	back	projection	algorithm.		

In	the	course	of	my	work	I	gave	insight	the	main	steps	of	point	cloud	processing	such	as	

filtering,	 segmentation	 and	 object	 detection	 and	 I	 also	 proposed	 a	 feature	 extracting	

method	and	a	deep	learning	pipeline	to	classify	objects.	I	also	developed	a	sparse	voxel	

structure	 to	achieve	more	robust	segmentation,	object	detection	and	 feature	extraction	

results	considering	the	computation	time.	

In	recent	years,	companies	like	Google,	Amazon,	Tesla	or	Toyota	have	been	made	a	huge	

effort	to	develop	autonomous	robots	and	cars.	Visual	surveillance,	urban	planning,	traffic	

control	 and	 several	 GIS	 applications	 also	 play	 increasing	 role	 in	 nowadays.	 Sensor	

companies	such	as	Velodyne	or	Riegl	are	developing	smaller,	more	efficient	and	accurate	

3D	sensors	and	mapping	systems	to	satisfy	the	mentioned	applications.		

In	my	future	work	I	will	plan	to	design	further	algorithms	and	data	structures	to	reach	

more	accurate	object	detection.	Furthermore,	in	autonomous	driving	real-time	processing	

is	a	crucial	need	so	I	will	speed	up	and	optimize	the	algorithms.	It	is	also	interesting	to	use	

contextual	 based	 features	 and	 combine	 the	 deep	 learning	 output	 with	 model	 based	

machine	learning.		
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